Nouvelle interpretation des fractures des eruptions laterales de l'Etna; consequences pour son cadre tectonique

2001 ◽  
Vol 172 (4) ◽  
pp. 455-467 ◽  
Author(s):  
Jean-Claude Bousquet ◽  
Gianni Lanzafame

Abstract Mt Etna is cut by numerous fractures (fissures and faults) of very different origin and orientation. They have been used to define the activity and the tectonic setting of the volcano. After a discussion of the proposed tectonic models for Etna, an examination of the fractures, which are linked to the high flank eruptions, was carried out based on the geological and geophysical studies of the recent eruptions (1983, 1989, 1991-93). All of these surface breaks are of strictly volcanic origin; they open and advance very slowly, in relation to the propagation of the dyke, as well as its width and depth from the volcano surface. If the dyke summit is not too far from the surface (about 200-300 m), fissures and normal faults, arranged in a graben, appear. When the dyke intersects the slope of the volcano, a flank eruption follows. Therefore, these fractures do not have a tectonic or volcano-tectonic origin: they do not cut the entire volcanic edifice, and thus cannot be used to define the rift-zones nor to characterise the tectonic regime controlling the functioning of Etna. They give information on the dyke orientation on the slopes of the volcanic edifice and cannot be used as significative markers of extension [Frazzetta and Villari, 1981; Kieffer 1983a and b; Monaco et al., 1997]. The simultaneous opening of radial fractures, according to various azimuths, is frequent and clearly indicates that, in these cases, the regional stress field is not implicated. But high on Etna, the concentration of flank eruptions, on the eastern side, and the orientation change of the fractures (fig. 6), when they travel away from the summit, have been repeatedly indicated. The repetition of flank eruptions and the azimuth changes can be explained, simply, by the closeness of the Valle del Bove [Murray, 1994], which induces a decrease of the confinement pressure. The dyke emplacements of the summit eruptions cause an eastward displacement of the higher part of Etna. Marine geophysical data indicate that this volcano is, however, not the site of a large scale lateral spreading to the Ionian sea. Consequently, an eastward detachment is present only on the superior part of the volcano (figs. 1B and 7C). In fact, an up to 100 m high and oversteepened east-facing scarp, between the towns of Vena and Presa, extends towards the south for some kilometers [Lanzafame et al., 2000]. It is made up of volcanic rocks affected by strong brecciation. Inverse faults are found in front of the scarp. The base of this one is found at the level of the pre-Etnean clays, which would have helped the displacement of the volcanics. The studies on the tectonic setting in which Etna is located has called the attention of numerous researchers. From the earliest studies, the presence of numerous normal faults has supported the idea that this volcano, as many others, is active in an extensional regime. The most recent geological and geophysical data show a more complex situation. Deep under Etna (more than 10 km), a compressive field (sigma 1 N-S) is present according to focal mechanisms [Cardaci et al.; 1990; Ferrucci et al., 1993; Cocina et al., 1997]. More superficially, instead, extension is usual. The importance of the weight of the volcanic edifice, in the spatial (horizontal and vertical) modification of the compressive stress field, must still be clarified. It is very clear, in any case, that Etna cannot be explained by an extensional regime or kinematics in extension [Monaco et al., 1997] using normal faults, which form during the flank eruptions.

2011 ◽  
Vol 24 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Jiří Žák ◽  
Igor Soejono ◽  
Vojtěch Janoušek ◽  
Zdeněk Venera

AbstractAt Pitt Point, the east coast of Graham Land (Antarctic Peninsula), the Early to Middle Jurassic (Toarcian–Aalenian) rhyolite dykes form two coevally emplaced NNE–SSW and E–W trending sets. The nearly perpendicular dyke sets define a large-scale chocolate-tablet structure, implying biaxial principal extension in the WNW–ESE and N–S directions. Along the nearby north-eastern slope of Mount Reece, the WNW–ESE set locally dominates suggesting variations in the direction and amount of extension. Magnetic fabric in the dykes, revealed using the anisotropy of magnetic susceptibility (AMS) method, indicates dip-parallel to dip-oblique (?upward) magma flow. The dykes are interpreted as representing sub-volcanic feeder zones above a felsic magma source. The dyke emplacement was synchronous with the initial stages of the Weddell Sea opening during Gondwana break-up, but it remains unclear whether it was driven by regional stress field, local stress field above a larger plutonic body, or by an interaction of both.


Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 319-337 ◽  
Author(s):  
Stefano Gori ◽  
Emanuela Falcucci ◽  
Chiara Ladina ◽  
Simone Marzorati ◽  
Fabrizio Galadini

Abstract. The general basin and range Apennine topographic characteristic is generally attributed to the presently active normal fault systems, whose long-term activity (throughout the Quaternary) is supposed to have been responsible for the creation of morphological/structural highs and lows. By coupling field geological survey and geophysical investigations, we reconstructed the 3-D geological model of an inner tectonic basin of the central Apennines, the Subequana Valley, bounded to the northeast by the southern segment of one of the major active and seismogenic normal faults of the Apennines, known as the Middle Aterno Valley–Subequana Valley fault system. Our analyses revealed that, since the late Pliocene, the basin evolved in a double half-graben configuration through a polyphase tectonic development. An early phase, Late Pliocene–Early Pleistocene in age, was controlled by the ENE–WSW-striking and SSE-dipping Avezzano–Bussi fault, that determined the formation of an early depocentre towards the N–NW. Subsequently, the main fault became the NW–SE-striking faults, which drove the formation during the Quaternary of a new fault-related depocentre towards the NE. By considering the available geological information, a similar structural evolution has likely involved three close tectonic basins aligned along the Avezzano–Bussi fault, namely the Fucino Basin, the Subequana Valley, and the Sulmona Basin, and it has been probably experienced by other tectonic basins of the chain. The present work therefore points out the role of pre-existing transverse tectonic structures, inherited by previous tectonic phases, in accommodating the ongoing tectonic deformation and, consequently, in influencing the structural characteristics of the major active normal faults. This has implications in terms of earthquake fault rupture propagation and segmentation. Lastly, the morpho-tectonic setting of the Apennine chain results from the superposition of deformation events whose geological legacy must be considered in a wider evolutionary perspective. Our results testify that a large-scale basin and range geomorphological feature – often adopted for morpho-tectonic and kinematic evaluations in active extensional contexts, as in the Apennines – just led by range-bounding active normal faults may be actually simplistic, as it could not be applied everywhere, owing to peculiar complexities of the local tectonic histories.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Oh Park ◽  
Naoto Takahata ◽  
Ehsan Jamali Hondori ◽  
Asuka Yamaguchi ◽  
Takanori Kagoshima ◽  
...  

AbstractPlate bending-related normal faults (i.e. bend-faults) develop at the outer trench-slope of the oceanic plate incoming into the subduction zone. Numerous geophysical studies and numerical simulations suggest that bend-faults play a key role by providing pathways for seawater to flow into the oceanic crust and the upper mantle, thereby promoting hydration of the oceanic plate. However, deep penetration of seawater along bend-faults remains controversial because fluids that have percolated down into the mantle are difficult to detect. This report presents anomalously high helium isotope (3He/4He) ratios in sediment pore water and seismic reflection data which suggest fluid infiltration into the upper mantle and subsequent outflow through bend-faults across the outer slope of the Japan trench. The 3He/4He and 4He/20Ne ratios at sites near-trench bend-faults, which are close to the isotopic ratios of bottom seawater, are almost constant with depth, supporting local seawater inflow. Our findings provide the first reported evidence for a potentially large-scale active hydrothermal circulation system through bend-faults across the Moho (crust-mantle boundary) in and out of the oceanic lithospheric mantle.


Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 271 ◽  
Author(s):  
Michael Zhdanov ◽  
Fouzan Alfouzan ◽  
Leif Cox ◽  
Abdulrahman Alotaibi ◽  
Mazen Alyousif ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Luiz Paulo de Freitas Assad ◽  
Carina Stefoni Böck ◽  
Rogerio Neder Candella ◽  
Luiz Landau

The knowledge of wind stress variability could represent an important contribution to understand the variability over upper layer ocean volume transports. The South Brazilian Bight (SBB) circulation had been studied by numerous researchers who predominantly attempted to estimate its meridional volume transport. The main objective and contribution of this study is to identify and quantify possible interannual variability in the ocean volume transport in the SBB induced by the sea surface wind stress field. A low resolution ocean global circulation model was implemented to investigate the volume transport variability. The results obtained indicate the occurrence of interannual variability in meridional ocean volume transports along three different zonal sections. These results also indicate the influence of a wind driven large-scale atmospheric process that alters locally the SBB and near-offshore region wind stress field and consequently causes interannual variability in the upper layer ocean volume transports. A strengthening of the southward flow in 25°S and 30°S was observed. The deep layer ocean volume transport in the three monitored sections indicates a potential dominance of other remote ocean processes. A small time lag between the integrated meridional volume transports changes in each monitored zonal section was observed.


Author(s):  
Zhonghua Tian ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Peng Huang ◽  
Ji’en Zhang ◽  
...  

The orogenic architecture of the Altaids of Central Asia was created by multiple large-scale slab roll-back and oroclinal bending. However, no regional structural deformation related to roll-back processes has been described. In this paper, we report a structural study of the Beishan orogenic collage in the southernmost Altaids, which is located in the southern wing of the Tuva-Mongol Orocline. Our new field mapping and structural analysis integrated with an electron backscatter diffraction study, paleontology, U-Pb dating, 39Ar-40Ar dating, together with published isotopic ages enables us to construct a detailed deformation-time sequence: During D1 times many thrusts were propagated northwards. In D2 there was ductile sinistral shearing at 336−326 Ma. In D3 times there was top-to-W/WNW ductile thrusting at 303−289 Ma. Two phases of folding were defined as D4 and D5. Three stages of extensional events (E1−E3) separately occurred during D1−D5. Two switches of the regional stress field were identified in the Carboniferous to Early Permian (D1-E1-D2-D3-E2) and Late Permian to Early Triassic (D4-E3-D5). These two switches in the stress field were associated with formation of bimodal volcanic rocks, and an extensional interarc basin with deposition of Permian-Triassic sediments, which can be related to two stages of roll-back of the subduction zone on the Paleo-Asian oceanic margin. We demonstrate for the first time that two key stress field switches were responses to the formation of the Tuva-Mongol Orocline.


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
G. Patanè ◽  
C. Centamore ◽  
S. La Delfa

This paper analyses twelve etnean earthquakes which occurred at various depths and recorded at least by eleven stations. The seismic stations span a wide part of the volcanic edifice; therefore each set of direct P-wave arrival times at these stations can be considered appropriate for tracing isochronal curves. Using this simple methodology and the results obtained by previous studies the authors make a reconstruction of the geometry of the bodies inside the crust beneath Mt. Etna. These bodies are interpreted as a set of cooled magmatic masses, delimited by low-velocity discontinuities which can be considered, at present, the major feeding systems of the volcano.


2020 ◽  
Author(s):  
Finnigan Illsley-Kemp ◽  
Martha Savage ◽  
Colin Wilson ◽  
S Bannister

© 2019. American Geophysical Union. All Rights Reserved. We use crustal seismic anisotropy measurements in the North Island, New Zealand, to examine structures and stress within the Taupō Volcanic Zone, the Taranaki Volcanic Lineament, the subducting Hikurangi slab, and the Hikurangi forearc. Results in the Taranaki region are consistent with NW-SE oriented extension yet suggest that the Taranaki volcanic lineament may be controlled by a deep-rooted, inherited crustal structure. In the central Taupō Volcanic Zone anisotropy fast orientations are predominantly controlled by continental rifting. However at Taupō and Okataina volcanoes, fast orientations are highly variable and radial to the calderas suggesting the influence of magma reservoirs in the seismogenic crust (≤15 km depth). The subducting Hikurangi slab has a predominant trench-parallel fast orientation, reflecting the pervasive presence of plate-bending faults, yet changing orientations at depths ≥120 km beneath the central North Island may be relics from previous subduction configurations. Finally, results from the southern Hikurangi forearc show that the orientation of stresses there is consistent with those in the underlying subducting slab. In contrast, the northern Hikurangi forearc is pervasively fractured and is undergoing E-W compression, oblique to the stress field in the subducting slab. The north-south variation in fore-arc stress is likely related to differing subduction-interface coupling. Across the varying tectonic regimes of the North Island our study highlights that large-scale tectonic forces tend to dictate the orientation of stress and structures within the crust, although more localized features (plate coupling, magma reservoirs, and inherited crustal structures) can strongly influence surface magmatism and the crustal stress field.


2001 ◽  
Vol 34 (4) ◽  
pp. 1405
Author(s):  
Γ. Δ. ΔΑΝΑΜΟΣ ◽  
Ε. Λ. ΛΕΚΚΑΣ ◽  
Σ. Γ. ΛΟΖΙΟΣ

The Jan. 26, 2001, Ms=7.7 earthquake occurred in Gujarat region of W. India, which lies 200-400 Km away from the active plate boundary zone, between the Indian subcontinent and the Asian plate, along the India-Pakistan border and the Himalayan belt. An Ms=7.7±0.2 earthquake also occurred in the same region in 1819. A zone of co-seismic E-W surface ruptures, 30-40 Km long and 15-20 Km wide, observed near the epicentral area and seems to be associated with pre-existing reverse faults and thrust folds, which were partially reactivated during the recent earthquake. Except the reverse vertical displacement a significant right lateral displacement was also observed along these E-W surface ruptures. This Ms=7.7 seismic event has been also accompanied by a large scale flexural-slip folding, as the absence of significant co-seismic fault displacement and fault scarp shows. This type of compressional tectonic deformation is also confirmed by the focal mechanism of the earthquake and the seismo-tectonic "history" of the area. The NW-SE open cracks, also observed along the same zone, are associated with the right lateral horizontal displacement of the reactivated fault (or branch faults) and the development of local extensional stress field in the huge anticlinic hinges of the co-seismic flexural-slip folds. A large number of ground ruptures, failures and open cracks are also associated with extensive sand boils, liquefaction phenomena and lateral spreading.


Sign in / Sign up

Export Citation Format

Share Document