A Comparison of Two Different IMPSAT Models in Compositional Simulation

SPE Journal ◽  
2007 ◽  
Vol 12 (01) ◽  
pp. 145-151 ◽  
Author(s):  
Jarle Haukas ◽  
Ivar Aavatsmark ◽  
Magne Espedal ◽  
Edel Reiso

Summary A new IMPSAT model, with explicit solution of variables that are isochoric (i.e., complementary to volumes), is compared to the conventional IMPSAT model, which determines phase mole fractions explicitly. The compared properties are performance of the nonlinear iteration and numerical stability. The use of complementary variables in the new IMPSAT model makes the nonlinear system better conditioned. Consequently, fewer nonlinear iteration steps are required. The resulting speedup more than compensates for the added costs of introducing and using the isochoric variables. The stability criterion associated with the new IMPSAT model is in many cases significantly less conservative than the conventional criterion. However, for cases in which there is little or no saturation change between the hydrocarbon phases (e.g., for retrograde gas condensate cases or single hydrocarbon phase cases), the difference between the criteria is insignificant. The timestep sizes for which instabilities occur are practically the same for the two models, and no oscillations have been observed unless both the new and the conventional criterion are violated. Consequently, the stability properties are similar, and the new criterion seems to apply to both models. Our conclusions are supported by numerical results. Introduction An isothermal compositional model of Nc components involves the solution of Nc flow equations per gridblock (e.g., the mass balance equations): (Eq. 1) where ?ni is the change in the amount of component i during timestep ?t, while fi and qi are the component interblock flow and source rates. In addition, phase equilibrium between the oil and gas phases (e.g., equalities of fugacities), (Eq. 2) must be taken into account. Because of the large number of equations and the complex thermodynamics, it is too demanding to determine all variables implicitly (i.e., simultaneously in all gridblocks). Instead, we use a partially explicit approach, where some variables are determined implicitly, while others are determined explicitly, gridblock by gridblock. The explicit solution relies on explicit treatment of variables (i.e., evaluating parts of the interblock flow with variables from the previous time level).

SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0873-0887 ◽  
Author(s):  
Hangyu Li ◽  
Louis J. Durlofsky

Summary Compositional flow simulation, which is required for modeling enhanced-oil-recovery (EOR) operations, can be very expensive computationally, particularly when the geological model is highly resolved. It is therefore difficult to apply computational procedures that require large numbers of flow simulations, such as optimization, for EOR processes. In this paper, we develop an accurate and robust upscaling procedure for oil/gas compositional flow simulation. The method requires a global fine-scale compositional simulation, from which we compute the required upscaled parameters and functions associated with each coarse-scale interface or wellblock. These include coarse-scale transmissibilities, upscaled relative permeability functions, and so-called α-factors, which act to capture component flow rates in the oil and gas phases. Specialized near-well treatments for both injection and production wells are introduced. An iterative procedure for optimizing the α-factors is incorporated to further improve coarse-model accuracy. The upscaling methodology is applied to two example cases, a 2D model with eight components and a 3D model with four components, with flow in both cases driven by wells arranged in a five-spot pattern. Numerical results demonstrate that the global compositional upscaling procedure consistently provides very accurate coarse results for both phase and component production rates, at both the field and well level. The robustness of the compositionally upscaled models is assessed by simulating cases with time-varying well bottomhole pressures that are significantly different from those used when the coarse model was constructed. The coarse models are shown to provide accurate predictions in these tests, indicating that the upscaled model is robust with respect to well settings. This suggests that one can use upscaled models generated from our procedure to mitigate computational demands in important applications such as well-control optimization.


1998 ◽  
Vol 1 (02) ◽  
pp. 155-160 ◽  
Author(s):  
Yih-Bor Chang ◽  
Brian K. Coats ◽  
James S. Nolen

Abstract This paper presents a three-dimensional, three-phase compositional model for simulating CO2 flooding including CO2 solubility in water. Both fully implicit and IMPES formulations are included. In this model, CO2 is allowed to dissolve in the aqueous phase while all other components except water exist in the oil and gas phases. Oil- and gas-phase densities and fugacities are modeled by a cubic equation of state. The aqueous phase properties are functions of the amount of dissolved CO2. CO2 solubility is computed using a CO2 fugacity coefficient table that is converted internally from input CO2 solubility data as a function of pressure at reservoir temperature. Correlations for computing the solubility of CO2 in water and other properties of CO2 saturated water are presented. Results for simulation runs with and without CO2 solubility in water are shown for comparison. IntroductIon Compositional models using a cubic equation of state are usually used to simulate the enhanced recovery process of gas injection. In most of the published models, for example Coats and Young and Stephenson, all hydrocarbon components exist in the oil and gas phases but are not allowed to dissolve in the aqueous phase. Usually, this assumption is adequate since the hydrocarbon solubility in water is low over the range of temperature and pressure for gas injection. Carbon dioxide, however, is an exception to this assumption. The solubility of CO2 in water is much higher than that of hydrocarbon components and is a factor that can not be neglected in the simulation process. This is especially true when CO2 is injected into a previously waterflooded reservoir or when CO2 is injected with water for mobility control. Tile objective of this paper is to model oil recovery processes involving CO2 injection while taking into account the effects of CO2 solubility in water. The effects of the presence of an aqueous phase on the phase behavior of CO2/hydrocarbon systems have been experimentally studied by Pollack et al. It was found that the presence of water reduces the amount of CO2 available for mixing with the hydrocarbons, and shifts the pressure-composition diagram of CO2/crude oil system. The solubility of CO2 in water is a function of temperature, pressure and water salinity. A thorough study of CO2 solubility data in distilled water was presented by Dodds et al. In general, CO2 solubility increases with pressure and decreases with temperature. An increase in salinity of the reservoir water decreases CO2 solubility significantly. Li and Nghiem used Henry's Law to estimate CO2 solubility in distilled water and used the scaled-particle theory to take into account the presence of salt in the aqueous phase. Enick and Klara also used Henry's Law to predict CO2 solubility in distilled water. Tile decreased solubility of CO2 in brine was accounted for empirically by a single factor correlated to the weight percent of dissolved solid. However, a wide scatter of data characterizes their correlation. A compositional model for simulating CO2 floods including CO2 solubility in water is presented. In this model, hydrocarbons and CO2 are allowed to exist in the oil and gas phases while only CO2 and water exist in the aqueous phase. A cubic equation of state is used to model oil- and gas-phase densities and fugacities. An input table of CO2 solubility in water, water formation volume factor, water compressibility and water viscosity is required for this model. These data, which are obtained either experimentally or generated from correlations, are entered as a function of pressure at reservoir temperature. The CO2 solubility in water is internally converted into a fugacity coefficient table as a function of pressure. The fugacity coefficients are then used to compute the amount of CO2 in water during simulation using the equality of component chemical potential constraint. The water formation volume factor, compressibility and viscosity are then computed as a function of the amount of CO2 dissolved in the water.


1975 ◽  
Vol 34 (02) ◽  
pp. 426-444 ◽  
Author(s):  
J Kahan ◽  
I Nohén

SummaryIn 4 collaborative trials, involving a varying number of hospital laboratories in the Stockholm area, the coagulation activity of different test materials was estimated with the one-stage prothrombin tests routinely used in the laboratories, viz. Normotest, Simplastin-A and Thrombotest. The test materials included different batches of a lyophilized reference plasma, deep-frozen specimens of diluted and undiluted normal plasmas, and fresh and deep-frozen specimens from patients on long-term oral anticoagulant therapy.Although a close relationship was found between different methods, Simplastin-A gave consistently lower values than Normotest, the difference being proportional to the estimated activity. The discrepancy was of about the same magnitude on all the test materials, and was probably due to a divergence between the manufacturers’ procedures used to set “normal percentage activity”, as well as to a varying ratio of measured activity to plasma concentration. The extent of discrepancy may vary with the batch-to-batch variation of thromboplastin reagents.The close agreement between results obtained on different test materials suggests that the investigated reference plasma could be used to calibrate the examined thromboplastin reagents, and to compare the degree of hypocoagulability estimated by the examined PIVKA-insensitive thromboplastin reagents.The assigned coagulation activity of different batches of the reference plasma agreed closely with experimentally obtained values. The stability of supplied batches was satisfactory as judged from the reproducibility of repeated measurements. The variability of test procedures was approximately the same on different test materials.


Author(s):  
Ю.И. Цой

Задача получения однородного состава ЛКМ сводится к правильному выбору пленкообразователей и соответствующих растворителей и, в случае необходимости, разбавителей и добавок. На основе положений теории растворимости была проведена оценка совместимости компонентов и стабильности таких систем. Критериями оценки были приняты параметры растворимости и термодинамического взаимодействия. Исследовали совместимость алкидных лаков с аминоформальдегидными смолами в бутаноле, и результаты этих исследований представлены в треугольной фазовой диаграмме. Для оценки совместимости смол по результатам расчета параметров термодинамического взаимодействия были построены спинодали для тройных систем. Как показывает анализ результатов проведенных исследований, даже при большой разности ?? = |?12 – ?13| = 0,2 наблюдается небольшая область несовместимости. С уменьшением разности ?? область несовместимости сужается. При ?23 > ?с область несовместимости расширяется как для ? = 0,2, так и для ?? = 0,1 и ?? = 0. Таким образом, для таких систем на совместимость компонентов, в первую очередь, влияет их взаимодействие между собой – чем оно больше, тем лучше они совместимы. Проведенные исследования показали, что парциальные параметры растворимости, учитывающие природу когезионных сил, более объективно характеризуют растворимость пленкообразующих смол в органических растворителях, чем их общий параметр растворимости. Растворимость пленкообразующих алкидных и этерифицированных аминоформальдегидных смол в органических растворителях обусловлена термодинамическим взаимодействием молекулярных сил различной природы. Стабильность смеси алкидной и этерифицированной аминоформальдегидной смолы в бутаноле обусловлена в большей степени термодинамическим взаимодействием молекулярных сил; при этом степень бутанолизации меламиноформальдегидной смолы оказывает наибольшее влияние на стабильность cистемы. Проведенные исследования по стабильности лакокрасочных смесей из различных пленкообразующих смол на основе рассмотренных критериев оценки могут быть использованы для совершенствования технологии защитно-декоративной отделки древесины. The problem of obtaining a homogeneous composition of the coatings is reduced to the proper selection of film-forming agents, and diluent and, if appropriate, diluents and additives. On the basis of the theory of solubility, we have carried out the assessment of the compatibility of the components and stability of such systems. The evaluation criteria were adopted the parameters of the solubility and thermodynamic interaction. Researched the compatibility with alkyd varnishes aminoformaldehyde resin in butanol, and the results of these studies are presented in the triangular phase diagram. To evaluate the compatibility of the resins according to the results of calculation of thermodynamic parameters of interaction were built spinodal for ternary systems. As the analysis of the results of the studies, even when the difference ??|?12 – ?13| = 0,2 there is a small area of incompatibility. With the decrease of the difference ? ? region incompatibility narrows. When ?23> ?с region incompatibility extends to ?? = 0,2, and for ?? = 0.1 and ?? = 0. Thus, for such systems, compatibility of components, primarily, affects their interaction with each other – the further away it is, the better they are compatible. Studies have shown that the partial solubility parameters, which take into account the nature of cohesive forces, more objectively characterize the solubility of film-forming resins in organic solvents than their total solubility parameter. The solubility and film-forming aminoformaldehyde esterified alkyd resins in organic solvents due to thermodynamic interaction of molecular forces of different nature. Тhe stability of the mixture and aminoformaldehyde esterified alkyd resin in butanol is generated largely by thermodynamic forces of molecular interaction; the degree of butanolate melamine-formaldehyde resin has the greatest effect on the stability of the system. Conducted research on the stability of the paint mixtures of various film-forming resins on the basis of the evaluation criteria can be used to improve the technology of protective and decorative wood finish.


Author(s):  
Yong Wang

The purpose of this study is to explore the stability and interaction between parental pressure and social research report, as well as the role of employment status and family income levels in this process. This study used a special study on Korean children (PSKC) 2–4 waves. Use t-test, correlation and autoregressive cross-delay modeling to analyze the data. The main findings of this study are: First, over time, parental pressure and mother’s social research report are consistent. Secondly, the pressure of motherhood and childcare has an obvious lagging effect on upbringing, and vice versa. Third, there is no significant difference between working mothers and non-working mothers in terms of the stability of working parents' pressure, social research report and social research report for children's pressure channels. However, parental pressure can only predict the social research report of working mothers. Fourth, there is no significant difference between the stability and interaction of these two structures in household income levels. In short, the results show that, over time, parental pressure is consistent with mother’s social research report. The results also show that there is a significant cross-lag effect between the mothers’ perceptions of mutual pressure analysis. In the process from parental pressure to social research report, I found the difference between working and non-working mothers. The advantage of this study is that the expected longitudinal design was adopted during infancy and the priority between the two structures can be considered. The results of this study can be used as a source of intervention plans to help parents withstand severe parenting pressure and lack of social research report.


2021 ◽  
Vol 13 (4) ◽  
pp. 793
Author(s):  
Guoqiang Jiao ◽  
Shuli Song ◽  
Qinming Chen ◽  
Chao Huang ◽  
Ke Su ◽  
...  

BeiDou global navigation satellite system (BDS) began to provide positioning, navigation, and timing (PNT) services to global users officially on 31 July, 2020. BDS constellations consist of regional (BDS-2) and global navigation satellites (BDS-3). Due to the difference of modulations and characteristics for the BDS-2 and BDS-3 default civil service signals (B1I/B3I) and the increase of new signals (B1C/B2a) for BDS-3, a systemically bias exists in the receiver-end when receiving and processing BDS-2 and BDS-3 signals, which leads to the inter-system bias (ISB) between BDS-2 and BDS-3 on the receiver side. To fully utilize BDS, the BDS-2 and BDS-3 combined precise time and frequency transfer are investigated considering the effect of the ISB. Four kinds of ISB stochastic models are presented, which are ignoring ISB (ISBNO), estimating ISB as random constant (ISBCV), random walk process (ISBRW), and white noise process (ISBWN). The results demonstrate that the datum of receiver clock offsets can be unified and the ISB deduced datum confusion can be avoided by estimating the ISB. The ISBCV and ISBRW models are superior to ISBWN. For the BDS-2 and BDS-3 combined precise time and frequency transfer using ISBNO, ISBCV, ISBRW, and ISBWN, the stability of clock differences of old signals can be enhanced by 20.18%, 23.89%, 23.96%, and 11.46% over BDS-2-only, respectively. For new signals, the enhancements are −50.77%, 20.22%, 17.53%, and −3.69%, respectively. Moreover, ISBCV and ISBRW models have the better frequency transfer stability. Consequently, we recommended the optimal ISBCV or suboptimal ISBRW model for BDS-2 and BDS-3 combined precise time and frequency transfer when processing the old as well as the new signals.


2021 ◽  
pp. 014459872098361
Author(s):  
Yanqiu Wang ◽  
Zhengxin Sun ◽  
Pengtai Li ◽  
Zhiwei Zhu

This paper analyzes the small cosmopolitan and stability of the industrial coupling symbiotic network of eco-industrial parks of oil and gas resource-based cities. Taking Daqing A Ecological Industrial Park as an example, we constructed the characteristic index system and calculated the topological parameters such as the agglomeration coefficient and the average shortest path length of the industrial coupling symbiotic network. Based on the complex network theory we analyzed the characteristics of the scaled world, constructed the adjacency matrix of material and information transfers between enterprises, drew the network topology diagram. We simulated the system analysis and analyzed the stability of the industrial coupling symbiotic network of the eco-industrial park using the network efficiency and node load and maximum connected subgraph. The analysis results are as follows: the small world degree δ of Daqing A Eco-industrial Park is 0.891, which indicates that the industrial coupled symbiotic network has strong small world characteristics; the average path is 1.268, and the agglomeration coefficient is 0.631. The probability of edge connection between two nodes in a symbiotic network is 63.1%, which has a relatively high degree of aggregation, indicating that energy and material exchanges are frequent among all enterprises in the network, the degree of network aggregation is high, and the dependence between nodes is high; when the tolerance parameter is 0 to 0.3, the network efficiency and the maximum connected subgraphs show a sharp change trend, indicating that the topology of the industrial coupling symbiotic network of the eco-industrial park changes drastically when the network is subjected to deliberate attacks. It is easy to cause the breakage of material flow and energy flow in the industrial park, which leads to the decline of the stability of the industrial coupling symbiotic network of the eco-industrial park.


Author(s):  
Harald Fripertinger ◽  
Jens Schwaiger

AbstractIt was proved in Forti and Schwaiger (C R Math Acad Sci Soc R Can 11(6):215–220, 1989), Schwaiger (Aequ Math 35:120–121, 1988) and with different methods in Schwaiger (Developments in functional equations and related topics. Selected papers based on the presentations at the 16th international conference on functional equations and inequalities, ICFEI, Bȩdlewo, Poland, May 17–23, 2015, Springer, Cham, pp 275–295, 2017) that under the assumption that every function defined on suitable abelian semigroups with values in a normed space such that the norm of its Cauchy difference is bounded by a constant (function) is close to some additive function, i.e., the norm of the difference between the given function and that additive function is also bounded by a constant, the normed space must necessarily be complete. By Schwaiger (Ann Math Sil 34:151–163, 2020) this is also true in the non-archimedean case. Here we discuss the situation when the bound is a suitable non-constant function.


2014 ◽  
Vol 887-888 ◽  
pp. 1328-1332
Author(s):  
Wang Biao Qiu ◽  
Wei Xing Chen

The article based on different frequency pulse equiponderance electromagnetic destressing comparison experiment, using vertical optical measurement to survey the changes of bearing ferrules size, study the difference between the effect of different frequency electromagnetic in removing residual stress, find the frequency of magnetic treatment pulse that help to maintain the stability of the thin-wall bearing collars' size, effectively improve the cycle of bearing ferrules process .


2009 ◽  
Vol 76-78 ◽  
pp. 459-464
Author(s):  
Jae Won Baik ◽  
Chang Wook Kang

Chemical mechanical polishing (CMP) is a technique used in semiconductor fabrication for planarizing the top surface of an in-process semiconductor wafer. Especially, Post-CMP thickness variations are known to have a severe impact on the stability of downstream processes and ultimately on device yield. Hence understanding how to quantify and characterize this non-uniformity is significant step towards statistical process control to achieve higher quality and enhanced productivity. The main reason is that the non-uniformed interface between the wafer and the machine-pad adversely affects the polishing performance and ultimate surface uniformity. The purpose of this paper is to suggest a new measure that estimates the uniformity of wafer surface considering the difference of the amount of abrasion between the center and the edge. This new measure which is called the Coefficient of Uniformity is defined as the following ratio: Geometric Mean (GM) / Arithmetic Mean (AM). This metric can be evaluated regionally to quantify the non-uniformity on the wafer surface from the center to the edge. Further simulations show that this new measure is insensitive to shift of the wafer center and sensitive to shift of the wafer edge. This trend indicates that this new measure is a very useful to test the non-uniformity of wafer after CMP polishing.


Sign in / Sign up

Export Citation Format

Share Document