A New Viscosity and Density Sensing Platform for Drilling Automation

2021 ◽  
Author(s):  
Miguel Gonzalez ◽  
Tim Thiel ◽  
Chinthaka Gooneratne ◽  
Robert Adams ◽  
Chris Powell ◽  
...  

Abstract During drilling operations, measurements of drilling fluid/mud viscosity and density provide key information to ensure safe operations (e.g., maintain wellbore integrity) and improve the rate of penetration (e.g., maintain proper hole cleaning). Nowadays, these measurements are still performed manually by using a calibrated funnel viscometer and a weight balance, as stipulated by current American Petroleum Institute (API) standards. In this study, we introduce an automated viscosity/density measurement system based on an electromechanical tuning fork resonator. The system allows for continuous measurements as fast as several times per second in a compact footprint, allowing it to be deployed in tanks or pipelines and/or gathering data from multiple sensors in the mud circulation system. The streams of data produced were broadcasted to a nearby computer allowing for live monitoring of the viscosity and density. The results obtained by the in-tank system in five wells were in good agreement with the standard reference measurements from the mud logs. Here, we describe the development and testing of the tool as well as general guidelines for integration into a rig edge-computing system for real-time analytics and detection of operational problems and drilling automation.

2012 ◽  
Author(s):  
M. N. Mohamad Ibrahim ◽  
S. B. Chuah ◽  
Cheng P. Y.

Satu penipis lumpur gerudi yang diperbaiki iaitu kompleks stanum–tanin–lignosulfonat, telah dihasilkan dengan melakukan pengubahsuaian terhadap penipis komersil iaitu lignosulfonat. Tindak balas yang terlibat termasuk tindak balas rangkai silang antara asid lignosulfonat dengan tanin pada suhu 105°C dengan kehadiran formaldehid yang berfungsi sebagai pemula tindak balas tersebut. Campuran tersebut selanjutnya dikelatkan dengan ion stanum. Tindak balas pengubahsuaian tersebut ditentusahkan menerusi analisis spektroskopi inframerah (IR) dan prestasinya sebagai agen penipis berpolimer bagi lumpur bentonit akueus dinilai. Prestasi reologi penipis terubahsuai tersebut kemudiannya dibandingkan dengan lignosulfonat. Keputusan menunjukkan bahawa penipis terubahsuai mempunyai prestasi penipisan yang lebih baik berbanding lignosulfonat pada suhu tinggi dan juga ketahanan yang lebih tinggi terhadap pencemaran garam. Kata kunci: lignosulfonat; bendalir/lumpur gerudi;ion stanum; tannin; prestasi reologi An improved drilling fluid thinner, tin–tannin–lignosulfonate (TTLS) complex; was formulated by imposing slight modifications to a commercially available thinner, lignosulfonate. The reactions involved include reaction of a lignosulfonate acid with tannin at 105°C in the presence of formaldehyde to initiate the cross-linking reaction. The mixture was further chelating with stannous ions. The modifications reactions were verified by an infrared (IR) spectroscopy analysis and its performances as a polymeric thinning agent for aqueous bentonite mud were evaluated. The rheological performances of the modified thinner were then compared with lignosulfonate. The modified thinner shows better thinning performance at higher temperature and indicates more tolerance to salt contamination compared to lignosulfonate. Key words: lignosulfonate; drilling fluid/mud; thinner; stannousion; tannin; rheological perfomances


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Abo Taleb T. Al-Hameedi ◽  
Husam H. Alkinani ◽  
Mohammed M. Alkhamis ◽  
Shari Dunn-Norman

Abstract Practically, to regulate filtration characteristics of drilling fluid, non-biodegradable materials used commonly have a high cost with side effects on personnel safety and the environment. Hence, eco-friendly additives are needed as an alternative to replace or at least support the commonly used filtration control agents. This experimental investigation examines the possibility of using date tree seeds’ powder (DTSP), as a new eco-friendly fluid loss agent. Under surface and sub-surface conditions (fresh and aged conditions), experiments were executed utilizing low-temperature and low-pressure (LTLP) and high-temperature and high-pressure (HTHP) American Petroleum Institute (API) filter press to comprehend the influence of DTSP on the seepage loss characteristics. The findings were compared with a commonly utilized chemical additive to regulate filtration characteristics of drilling fluid (low viscosity sodium carboxymethyl cellulose (CMC-LV)). Two concentrations of DTSP and CMC-LV were added separately to a reference fluid (RF) to understand the effect of concentration variations on filtration properties. The findings revealed that both DTSP and CMC-LV significantly improved the filtrate and the filter cake when comparing them with the RF under fresh and aged conditions. The findings for fresh conditions also showed that LTLP filtration measurements for CMC-LV additives had almost similar performance as DTSP additives, while HTHP filtration measurements exhibited that the two concentrations of DTSP additives were marginally better than those of CMC-LV additives. For aged conditions, CMC-LV additives were relatively more efficient than DTSP additives for LTLP filtration control experiments. However, DTSP additives were more efficient in improving the filtration characteristics as compared to CMC-LV additives for HTHP filtration control experiments. These results are in aid of shifting the oil and gas industry from using conventional harmful additives to using unconventional eco-friendly additives. This also helps in transforming unwanted food wastes into valuable commercial products, which can revolutionize the domestic and international industries and create new job opportunities, hence minimizing the total cost of drilling fluid and the wastes disposed to the environment.


2021 ◽  
Vol 11 (4) ◽  
pp. 1715-1726
Author(s):  
Ved Prakash ◽  
Neetu Sharma ◽  
Munmun Bhattacharya ◽  
Ashok Raina ◽  
Man Mohan Gusain ◽  
...  

AbstractThis work investigates the efficacy of a biodegradable natural product, litchi leaves powder (LLP) as a filtration loss control agent in the water-based drilling fluid formulations. In order to evaluate the potential of litchi leaves powder (LLP), a strict protocol of experimentations according to API (American Petroleum Institute) standard has been followed. The experimental outcome showed that before hot rolling and after hot rolling of mud samples at 100 °C it was observed that 3–5% Concentration of LLP significantly increased the rheological parameters such as PV, YP and gelation of drilling fluid as compared to reference mud. Also, LLP reformed the filtration loss control characterization, suggesting a better biodegradable fluid loss reducing agent. After hot rolling at 100 °C for 18 h, the water-based drilling fluid with LLP as an additive showed a marked reduction in filtration control property as compared to reference Mud (RM). Experimental results concluded that 5% concentration of LLP significantly reduced the filtration loss of drilling fluid by 70.6% as compared to reference mud under the influence of 100 psi pressure. However, the conventional fluid loss additive CMC (LVG) reduced the filtration loss by maximum 67.5% as compared to reference mud. Therefore, LLP can be used as an alternative to CMC (LVG) in water-based drilling fluid with a maximum subsurface temperature of 100 °C.


2019 ◽  
Vol 2 (2) ◽  

Due to significant variations of the subsurface geology from the surface to the top of reservoir and requirement of different fluid characteristics for drilling various hole there is a need to use various mud systems. These may include a simple spud mud for surface hole section, an inhibitive drilling fluid for reactive shale section, a salt water-based mud for salt diapirs and salt formations, and a highly lubricating mud for deviated hole sections with high dogleg severity.To optimize each of these separate and distinct scenarios, there is a need to change the mud system while drilling to overcome the technical challenges associated with these formations and wellbore profiles. The change over from one mud system to another is typically done between casing points while constructing the well to overcome specific drilling challenges associated with next whole section.There is significant time and effort required to clean the mud circulation system adequately before a mud change over in order to avoid any contamination of the new mud system.This is especially true when displacing a waterbased mud by an oil-based mud or an oil-based mud by a water-based mud.If this is not done properly, contamination of the new mud by the old mud could be a source of major problems due to partial or complete loss of functional ability of the new mud system. An adaptable drilling mud system that can easily be transformed from a spud mud system to an inhibitive, or a high lubricating or a salt water mud can provide the industry a versatile fluid system with multiple hole section applications.This removes much of the NPT associated with mud changeover, reduces the mud cost as compared to mixing a totally new mud system and eliminates concerns regarding mud contamination as well as any disposal or recycling cost for the replaced system. This paper describes a volcanic ash-based drilling mud that can be used as a spud mud to drill the surface hole, can easily be converted to an inhibitive mud system to drill reactive shale sections of a borehole, a salt water-based mud to drill the salt sections and also a high lubricating water-based drilling mud to reduce torque and drag problems in deviated and horizontal boreholes. The flexible and easily convertible nature of the base volcanic ash-based drilling mud has potential to reduce total drilling cost significantly as it eliminates a significant portion of non-productive drilling time associated with mud changeover, cleaning of mud circulation system, new mud preparation, incorporation of new mud in the circulation system and displacement of the old mud from the borehole by the new mud, etc.


2021 ◽  
Author(s):  
Sercan Gul

Abstract Drilling fluid (mud) serves various purposes in drilling operations, the most important being the primary well control barrier to prevent kicks and blowouts. Other duties include, but not limited to, maintaining wellbore stability, removing and transporting formation cuttings to the surface, cooling and lubricating downhole tools, and transmitting hydraulic energy to the drill bit. Mud quality is therefore related to most of the problems in drilling operations either directly or indirectly. The physics-based models used in the industry with drilling fluid information (i.e., cuttings transport, well hydraulics, event detection) are computationally expensive, difficult to integrate for real-time analysis, and not always applicable for all drilling conditions. For this reason, researchers have shown extensive interest in machine learning (ML) approaches to alleviate their fluid-related problems. In this study, a comprehensive review of the abundant literature on the various applications of ML in oil and gas operations, concentrating mainly on drilling fluids, is presented. It was shown that leveraging state-of-the-art supervised and unsupervised ML methods can help predict or eliminate most fluid-related issues in drilling. The review discusses various ML methods, their theory, applications, limitations, and achievements.


2021 ◽  
Vol 8 (4) ◽  
pp. 2861-2872
Author(s):  
Debrah Memshima Oahimire ◽  
Victor Uchechi Ukaegbu ◽  
Joel Friday Ogbonna

The massive exploration and production well drillings in Nigerian oilfield indicate the demand for drilling fluid supplements such as baryte, in managing over-pressured formations and preventing hazardous blowouts. The underdevelopment of Nigerian solid minerals has created a wide gap between the demand and supply of the local resource, whereas there exist some assertions that the Nigerian baryte quality is below the American Petroleum Institute, API, standard. This study aimed at testing and evaluating qualitatively, based on API standards, some baryte ores from the Benue area, Nigeria, to establish their usefulness or otherwise in oilfield drilling operations. General field studies and sampling with laboratory studies were done including flame tests, X-ray Diffraction and X-ray fluorescence, to confirm mineralogy and chemical compositions of the barytes respectively and very importantly, the API tests prescribed for drilling grade barytes were carried out. The results showed impressive quality barytes with a specific gravity range from 4.10 to 4.49 and concentration of alkaline earth metals as calcium, Ca, 20mg/kg to 48mg/kg, particle sizes processed within API standard requirement, and the weight percentage of BaSO4 composition of the ores ranged from 93.55% to 99.61%. There were no significant impurities of threat such as carbonates, iron ores, silicates and sulphides. The estimation of reserves and proper development of the resource is highly recommended as the quantity and quality might enhance the sustainability of local drilling grade baryte supply and save Nigeria the current huge capital flight and other plights


2013 ◽  
Vol 24 ◽  
pp. 1360009
Author(s):  
JOHN MAN

Density measurements for petro-ethanol blended fuels of various mixture ratios were conducted at temperatures from 5°C to 40°C using an oscillatory densitometer at the National Measurement Institute, Australia (NMIA). The petrol and ethanol fuels used for the preparation of samples of ethanol blends were supplied directly from a local petroleum refinery. Results were within the lower end of 0.06% repeatability and 0.3% reproducibility of the ASTM D4052-2011 method. The volume correction factors (VCF) for petrol and ethanol obtained from the measurement results agreed to within 0.1% and 0.01% of the values calculated as per American Petroleum Institute Standard 2540 Chapter 11.1 and 11.3.3 respectively. Based on a simple volume-mixture model, an equation was derived to calculate the VCF for petrol-ethanol blends. The measured and calculated values of VCF were in agreement within 0.1%. This paper presents the measurement method, results and the development of an equation for calculation of VCF for petro-ethanol blends. Note from Publisher: This article contains the abstract only.


2021 ◽  
Vol 11 (6) ◽  
pp. 2777-2789
Author(s):  
Rahman Ashena ◽  
Ali Ghalambor ◽  
Asad Elmgerbi ◽  
Abdol-Azim Hekmatinia ◽  
Muhammad Mubashir

AbstractControlling lost circulation during drilling operations in a reservoir prone to fluid losses is typically remedied by cement squeezing or plug setting as the last resort. The aim being to minimize or stop drilling fluid losses and to regain full returns at surface, and to maintain wellbore integrity. Different placement methods of cement plugs have been discussed in detail in the literature, except for the ‘level-off’ method, which can be effective for curing complete loss circulation cases. Following modeling and calculations of this cement plug placement method, its design and execution procedures are discussed, together with two successful field cases in highly fractured carbonate reservoirs in the Middle East. Using drill pipe and a Retrievable-Test-Treat-Squeeze (RTTS) packer, set with some spacing from the loss zone, the method entails that the cement slurry is allowed to drop by gravity in order to cure lost circulation. As the column of fluid, mud and slurry in the well exceeds formation pore pressure, i.e., overbalanced conditions, a volume of acid-soluble cement slurry is allowed to slowly drop and freely penetrate the formation, i.e., through its fractures or caverns. During the penetration of this viscous slurry into the loss zone, the cement slurry can set and the fracture or fissure openings are plugged. Presented are detailed design calculations for the level-off placement technique, determination of required cement slurry and displacement volumes, and recommended displacement and RTTS packer setting depths. The expected depth of the top of cement plug is estimated. The design parameters are compared with field cases and explanations are given for possible discrepancies. Success of the operation is discussed in terms of final mud loss after cement plugging and Non-Productive Time mitigation. Detailed field procedures and execution are also presented. The level-off job is already practiced by the industry, but it is not published in the literature, in some cases they have different methods with causing some errors. To the best of authors’ knowledge, this is the first detailed description and stepwise calculation of the level-off cement placement technique in the literature.


2021 ◽  
Vol 11 (5) ◽  
pp. 2157-2178
Author(s):  
David Oluwasegun Afolayan ◽  
Adelana Rasak Adetunji ◽  
Azikiwe Peter Onwualu ◽  
Oghenerume Ogolo ◽  
Richard Kwasi Amankwah

AbstractSuccessful drilling operations are dependent on the properties of the drilling fluid used to drill wells. Barite is used as a weighting agent during the preparation of drilling fluid. Over the years, oil and gas industry in Nigeria has been depending mainly on imported barite for drilling operations, whereas the country has huge deposits of barite. There is the need to assess the properties of the locally sourced barite for their suitability in drilling fluid formulation. This study presents the local processing methods of barite and examines the crude and on-the-site processed barite’s physio-chemical properties. These parameters were compared with American Petroleum Institute and Department of Petroleum Resources standards. XRD results show that on-the-site beneficiated barite has 87.79% BaSO4, 6.66% silica, 0.03% total soluble salt, 1.39% Fe2O3, and 1.603% heavy metals. Chemical analysis indicated that the pH, moisture content, metallic content such as Ca, Pb, Zn, Mg, Cu, and Cd minerals, and extractable carbonates were within the standard specified for usage as a drilling fluid weighting agent. The analysed crude barite samples were basic, within the pH of 8.3 and 8.6. Locally processed barite has lower Fe, Pb, Cd, and Cu content compared to industrially accepted barite. The specific gravity increased from 4.02 ± 0.07 to 4.15 ± 0.13, and the hardness reduced potentially from 5 Mohr to 3.5 Mohr on the hardness scale. The amount of impurities was sufficiently low, and the specific gravity of the samples improved to meet the needs of any drilling operation and compare favourably with industrially accepted barite.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 360
Author(s):  
Itohan Otoijamun ◽  
Moses Kigozi ◽  
Adelana Rasak Adetunji ◽  
Peter Azikiwe Onwualu

This work aimed to characterize barite samples from selected different locations in Nigeria and determine their suitability for various industrial applications. The properties determined include mineralogy, chemical composition, morphology, functional groups, and specific gravity. Samples were obtained from ten locations in Nasarawa and Taraba states as well as a standard working sample (WS) obtained from a drilling site. The samples were characterized using scanning electron microscope and energy dispersive X-ray (SEM-EDX), Fourier infrared analysis (FTIR), and X-ray diffraction (XRD). Specific gravity (SG) was determined using the pycnometer method. Results of SEM-EDX analysis show that the WS has a Ba-S-O empirical composition of 66.5% whereas these of the ten samples investigated vary between 59.36% and 98.86%. The FTIR analysis shows that the functional groups of S-O, SO42−, Ba-S-O, OH of the ten samples match that of the WS. Results of XRD show that the ten samples have the same mineralogical composition as the WS and all meet American Petroleum Institute (API) standards for industrial barite. Similar matching results are shown from EDXRF spectra intensity, position, and composition analysis of the ten samples compared to the WS. Specific gravity (SG) results show that six out of the ten samples have SG above 4.2 which is the recommended minimum for the American Petroleum Institute (API) standard. The other four samples will require beneficiation to meet the standard for drilling mud application. Using all the parameters of the assessment together, results show that while some (6) of the samples can be used for drilling fluid application, some (4) require beneficiation but all ten samples can be used for other industrial applications including healthcare, construction, plastic, cosmetics, paper, and rubber industries. The results of the study can be used for value addition in developing beneficiation procedures, processes, and technology for purification along with new materials for the industries.


Sign in / Sign up

Export Citation Format

Share Document