Field Application of Reaming-While-Drilling Technology in the Super Deep Composite Anhydrite-Salt Layers of Kuche Mountain Front in Tarim Oilfield

2021 ◽  
Author(s):  
Zhixiong Xu ◽  
Xueqing Teng ◽  
Ning Li ◽  
Hongtao Liu ◽  
Caiting Zhao ◽  
...  

Abstract The implementation of drilling technique for multiple lithology interbeds and high-pressure anhydrite-salt in the complex Mountain Front area has been completed. The plastic creep of the anhydrite-salt layers, the losses of the low-pressure sandstone, the overflow of the high-pressure salt-water, the narrow mud density window and frequent pipe-stuck occurrence are significant issues, which trigger significant engineering challenges downhole. This study presents the application of the reaming-while-drilling (RWD) technology which has led to minimize the downhole non-productive time (NPT) and achieve successful results. The RWD technique was applied in the composite anhydrite-salt formation of the Kumugeliemu group. Through optimized combination of the RWD tools, bits, reaming blades, and the mechanical analysis the drill string with shock-absorbing design and hydraulics optimization to guarantee the bit and the reamer blades have the proper pressure drop, hydraulic horsepower and flow-field distribution, the RWD was used with the vertical seeking tool drilling technology, resulting in minimum vibration and/or stick-slip, and achieving the expected rate of penetration (ROP) as well as target inclination. It improved the operation efficiency significantly while avoiding the downhole complexities at the same time. Since the geological structure of the offset well Keshen X (no RWD) is similar to Keshen XX (RWD technology was applied), a comparison between the two wells was performed. The reaming meterage in the composite anhydrite-salt layers in Keshen XX was 791 m, spending 15 days, average ROP is 3.73 m/hr. There was no overflew or loss during the drilling. It was smooth, no pipe sticking when checking the reaming effect during the wiper trip and the tripping out. On the other hand, Keshen X spent 29 days with average ROP of 1.35 m/hr to drill the 449 m composite anhydrite-salt rock. Moreover, it was difficult to trip in and trip out during the drilling, and the pipe sticking happened frequently, back-reaming frequently as well. There were losses during both the drilling and the casing running. Due to the unsmooth wellbore, this well increased additional 3 runs of reaming after drilling operation and 4 clean-out runs. 13 days later after the reaming operation, the anhydrite-salt rock creep was checked and found that the hole was still smooth, no pipe sticking existing. Hence, RWD technology has accomplished both goals of preventing the downhole complexities and speeding up drilling. The novel RWD technology can be well illustrated by presenting all the details of its application in salt-base formations.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.



2013 ◽  
Vol 405-408 ◽  
pp. 562-565
Author(s):  
Chun Hui Yao ◽  
Qiu Hui Yao

M coal mine is located in the hilly terrain of mountain front in the southern margin of Junggar Basin in Fukang. The geological structure belongs to a medium type in the mine area where there are surface faults (two larger faults) and structural developments. The stratigraphic dips of south limb of Fukang syncline and southern Fukang anticline are large while that near F5 fault of anticline axis are larger and even upright. Brittle rocks develop fractures. In consideration of meteorology, earthquakes and other factors, mining may lead to such geological hazards as eboulement and surface subsidence, which should be highlighted.



2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Adel M. Abdel Dayem

An innovative solar desalination system is successfully designed, manufactured, and experimentally tested at Makkah, 21.4 degN. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 l vertical cylindrical insulated tank. It includes storage, evaporator, and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 l a day per quadratic meter of collector surface area. By that it can produce about 1.6 l/kWh of solar energy. Moreover, the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.



Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.



Author(s):  
Jialin Tian ◽  
Gang Liu ◽  
Haolin Song ◽  
Chenghang Liu ◽  
Feng Wen




Author(s):  
B. Besselink ◽  
N. van de Wouw ◽  
H. Nijmeijer

Rotary drilling systems are known to exhibit torsional stick-slip vibrations, which decrease drilling efficiency and accelerate the wear of drag bits. The mechanisms leading to these torsional vibrations are analyzed using a model that includes both axial and torsional drill string dynamics, which are coupled via a rate-independent bit-rock interaction law. Earlier work following this approach featured a model that lacked two essential aspects, namely, the axial flexibility of the drill string and dissipation due to friction along the bottom hole assembly. In the current paper, axial stiffness and damping are included, and a more realistic model is obtained. In the dynamic analysis of the drill string model, the separation in time scales between the fast axial dynamics and slow torsional dynamics is exploited. Therefore, the fast axial dynamics, which exhibits a stick-slip limit cycle, is analyzed individually. In the dynamic analysis of a drill string model without axial stiffness and damping, an analytical approach can be taken to obtain an approximation of this limit cycle. Due to the additional complexity of the model caused by the inclusion of axial stiffness and damping, this approach cannot be pursued in this work. Therefore, a semi-analytical approach is developed to calculate the exact axial limit cycle. In this approach, parametrized parts of the axial limit cycle are computed analytically. In order to connect these parts, numerical optimization is used to find the unknown parameters. This semi-analytical approach allows for a fast and accurate computation of the axial limit cycles, leading to insight in the phenomena leading to torsional vibrations. The effect of the (fast) axial limit cycle on the (relatively slow) torsional dynamics is driven by the bit-rock interaction and can thus be obtained by averaging the cutting and wearflat forces acting on the drill bit over one axial limit cycle. Using these results, it is shown that the cutting forces generate an apparent velocity-weakening effect in the torsional dynamics, whereas the wearflat forces yield a velocity-strengthening effect. For a realistic bit geometry, the velocity-weakening effect is dominant, leading to the onset of torsional vibrations.



2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Qiang Zhang ◽  
Zhanping Song ◽  
Junbao Wang ◽  
Yuwei Zhang ◽  
Tong Wang

Due to the advantages of low porosity, low permeability, high ductility, and excellent capacities for creep and damage self-healing, salt rock is internationally considered as the ideal medium for underground storage of energy and disposal of radioactive waste. As one of the most important mechanical properties of salt rock, creep properties are closely related to the long-term operation stability and safety of salt rock underground storage cavern. A comprehensive review on the creep properties and constitutive model of salt rock is put forward in this paper. The opinions and suggestions on the research priority and direction of salt rock's mechanical properties in the future are put forward: (1) permeability variation of salt rock under the coupling effect of temperature and stress; (2) damage mechanism and evolution process under the effect of creep-fatigue interaction and low frequency cyclic loading; (3) microdeformation mechanisms of salt rock and the relationship between microstructure variations and macrocreep behavior during creep process; (4) the establishment of the creep damage constitutive model with simple form, less parameters, easy application, and considering the damage self-healing ability of salt rock simultaneously.



2021 ◽  
Author(s):  
Ruslan Fanisovich Gataullin ◽  
Stanislav Evgen’evich Ter-Saakov ◽  
Evgenij Vladimirovich Nikulin ◽  
Dmitriy Pavlovich Stifeev ◽  
Alexey Vyacheslavovich Filatov

Abstract This article describes engineering and technology solutions developed to successfully construct unconventional and unique horizontal well at the field of Eastern Siberia targeted to two isolated formations with an option to shut-off top Botuobinsky horizon after gas breakthrough and produce oil from underlying Ulakhansky bed further on. As oil-water contact in the lower part of Ulakhansky horizon makes fracturing the well inexpedient, multi hole drilling technology was implemented enabling drainage of the reserves that are far from the main borehole. The main objective of this well is to deplete Botuobinsky horizon subsequently shutting it off and continuing to recover petroleum reserves from Ulakhansky pay zone. Constructing such well is cost-effective, as it requires drilling only one intermediate casing interval instead of two. Accumulated experience of drilling and completing multi hole wells was used to ensure successful well construction; also, geological and stratigraphic data as well as possible complications while drilling Botuobunsky and Ulakhansky formations were analyzed in-depth. The following appliances were selected to meet the objective: –Bottom-hole equipment enabling drilling abrasive formations under conditions of high vibrations;–Special line of drill bits to ensure high ROP and successful sidetracking without additional tripping;–RSS with 152.4 mm drill bit. The goal set by the operating company was achieved through multi-faceted approach to performing the task, efficient cooperation of engineering technical services and continuous monitoring of output data while drilling. All that combined delivered the results listed below: –Sidetracks were carried out in an open horizontal hole without cement plugs and additional tripping for drill bit or BHA.–Minimized bottom-hole equipment failures under condition of increased high-frequency vibrations from bit while drilling hard formations due to implementation of modular PDM with data-transmitting channel.–Minimized bottom-hole equipment failures under condition of increased low-frequency vibrations from drill string with Hard Bending due to improved BHA design and optimized drilling parameters selection.–Liner was effectively run to Botuobinsky and Ulakhansky reservoirs with an option to shut-off the former after depletion and gas breakthrough. This well is the first one targeted at two isolated formations in East Siberia.



Sign in / Sign up

Export Citation Format

Share Document