Reviewing Cyclonic Low-Shear Choke and Control Valve Field Experiences

2021 ◽  
pp. 1-16
Author(s):  
Trygve Husveg ◽  
Rune Husveg ◽  
Niels van Teeffelen ◽  
Robert Verwey ◽  
Peter Guinee

Summary In hydrocarbon production and processing, choke and control valves mix and emulsify petroleum phases. The consequence is often that the efficiency of separation processes is affected and finally that the quality of oil and water phases is degraded. Over the last few years, low-shear valves targeting petroleum processes have emerged on the market. This paper presents four separate live-fluid experiences from low-shear valve installations, each surveyed and documented by an independent third party. Three of the installations refer to choke valves, whereas the fourth installation refers to a control valve. For each installation, standard choke and control valves were used as reference valves. In terms of downstream separation efficiency, the low-shear choke valves reduced oil-in-water concentrations respectively by 70, 45, and 60%, by total average. In the control valve application, the low-shear valve, which was located between the hydrocyclones and a compact flotation unit, reduced the oil-in-water concentration by 23%. In sum, the field installations have demonstrated that low-shear valves significantly and consistently reduce oil-in-water concentrations and thus improve the produced water quality. The results signify that low-shear valves may be used in debottlenecking separation and produced water treatment processes, reducing the environmental influence from produced water discharges. Because the low-shear technology enables processing of petroleum phases with less effort, energy, and chemicals, it also reduces emissions to air.

Author(s):  
Jinyuan Shi ◽  
Yong Wang ◽  
Xiaoping Zhong ◽  
Zhicheng Deng

A method for the reliability and the availability prediction of main stop valve and control valve systems of steam turbines is presented. The calculation models for the reliability and the availability of series, parallel and series-parallel systems of main stop valves and control valves are introduced. The reliability block diagrams, the availability block diagrams, formulas for the reliability prediction and the availability prediction of systems with 2 main stop valves and 2 control valves, 2 main stop valves and 4 control valves, 2 main stop valves and 6 control valves, 4 main stop valves and 4 control valves are given together with some examples. The mathematical model for the reliability and the availability prediction method of main stop valve and control valve systems of steam turbine is simple and the physical meaning is definite. The reliability and availability of main stop valve and control valve systems can be quantitatively already calculated and improved during the design stage. A basis is thus provided for the reliability and the availability design of main stop valve and control valve systems of steam turbines.


RSC Advances ◽  
2020 ◽  
Vol 10 (32) ◽  
pp. 18918-18926 ◽  
Author(s):  
Mengjin Zhai ◽  
Mian Wu ◽  
Cunying Wang ◽  
Xiaobing Li

The existence of fine-sized oil drops that are difficult to coalesce greatly decreases the separation efficiency of produced water from alkali, surfactant, and polymer flooding technology (ASP) containing oil-in-water emulsions.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4435 ◽  
Author(s):  
Dennis Severin Hansen ◽  
Stefan Jespersen ◽  
Mads Valentin Bram ◽  
Zhenyu Yang

Offshore oil and gas facilities are currently measuring the oil-in-water (OiW) concentration in the produced water manually before discharging it into the ocean, which in most cases fulfills the government regulations. However, as stricter regulations and environmental concerns are increasing over time, the importance of measuring OiW in real-time intensifies. The significant amount of uncertainties associated with manual samplings, that is currently not taken into consideration, could potentially affect the acceptance of OiW monitors and lower the reputation of all online OiW measurement techniques. This work presents the performance of four fluorescence-based monitors on an in-house testing facility. Previous studies of a fluorescence-based monitor have raised concerns about the measurement of OiW concentration being flow-dependent. The proposed results show that the measurements from the fluorescence-based monitors are not or insignificantly flow-dependent. However, other parameters, such as gas bubbles and droplet sizes, do affect the measurement. Testing the monitors’ calibration method revealed that the weighted least square is preferred to achieve high reproducibility. Due to the high sensitivity to different compositions of atomic structures, other than aromatic hydrocarbons, the fluorescence-based monitor might not be feasible for measuring OiW concentrations in dynamic separation facilities with consistent changes. Nevertheless, they are still of interest for measuring the separation efficiency of a deoiling hydrocyclone to enhance its deoiling performance, as the separation efficiency is not dependent on OiW trueness but rather the OiW concentration before and after the hydrocyclone.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2759
Author(s):  
Byoung-Ho Shin ◽  
Doo Yong Choi ◽  
Kwansue Jung ◽  
Zong Woo Geem

Water transmission pipelines, which transport bulk water into storage facilities, usually have a tree-type configuration with large dimensions; thus, the breakage of a pipeline may cause a catastrophic service interruption to customers. Although drain efficiency is closely related to the number of washout and control valves and their locations, there is no useful guideline. This paper proposes a valve locating method by introducing numerical analyses to enumerate drainage time and zone. A time integration method, combined with the Newton–Raphson algorithm, is suggested to resolve drainage time, while considering the friction loss in gravitational flow. A drain direction matrix, which shows drain direction and coverage, is derived using a network searching algorithm. Furthermore, a feasible practical approach is presented by introducing a critical horizontal slope, a major washout valve, drainage indices, and control valve embedment. The developed method is first applied to simple pipes to validate the drainage time module. Subsequently, the model is expanded to the CY transmission line, which is one of the BR water supply systems in South Korea currently in operation. The results reveal that three drain valve locations have been neglected, and the addition of control valves guarantees consistent drain time below the operational criteria.


2019 ◽  
Vol 17 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Ku Esyra Hani Ku Ishak ◽  
Mohammed Abdalla Ayoub

Purpose The purpose of this study is to investigate the performance of the fabricated liquid–liquid hydrocyclone (LLHC) with dimensions similar to those of one of the Malaysian oilfields with the presence of an anionic surfactant, S672. The effect of salinity and initial oil concentration were also investigated following the actual range concentration. Design/methodology/approach The current control system’s pressure drop ratio (PDR) does not necessarily lead to an efficient LLHC. Therefore, rather than using the PDR, the efficiency of the LLHC was analyzed by comparing the concentration of oil in the effluents with the concentration of oil at the feed of the LLHC. An LLHC test rig was developed at Centre of Enhanced Oil Recovery, Universiti Teknologi PETRONAS. Emulsions were prepared by mixing the brines, S672 and oil by using Ultra Turrax ultrasonic mixer. The emulsion was pumped into the LLHC at different feed flowrate and split ratio. The brines concentration, initial oil concentration and S672 concentration were also varied in this study. Samples were taken at the underflow of the LLHC and the oil in water concentration analysis was done for the samples using TD-500D equipment. Findings It was found that the efficiency of oil removal decreased with an increase in S672 concentration but increased with the increase in salinity and initial oil concentration. Originality/value The optimum feed flowrate for the LLHC of 45 mm diameter and length of 1,125 mm with the presence of S672 surfactant was found to be 40 L/min with a split ratio of 14%. This study can be used as a guidance for future optimization of the LLHC in the presence of the surfactant.


Author(s):  
Sepehr Maktabi ◽  
Jeffrey W. Schertzer ◽  
Paul R. Chiarot

Abstract To probe the complexity of biological systems, large numbers of independent experiments are needed to gather statistically reliable information. A platform that performs these experiments at high-throughput demands precise control over the formation and delivery of microcapsules. Microfluidics enables passive and active modes of droplet formation, manipulation, and mixing. Aqueous- and organic-based emulsions serve as well-defined compartments that encapsulate target materials (e.g., cells, reagents, nucleic acid, and nanoparticles) in femto- to picoliter volumes surrounded by an immiscible fluid. In this work, we demonstrate a high-throughput PDMS-based microfluidic device for fabrication and control of uniform micron-size water-in-oil and oil-in-water emulsions. Passive and active modes of droplet generation (i.e., hydrodynamic flow focusing and electrospray, respectively) are utilized to form droplets in the size range of 1 to 100 μm. We also leverage dielectrophoretic forces to steer the microemulsions across flows of organic or inorganic phases. The dielectrophoretic force provides high-speed separation with no moving elements and does not require droplet charging. Two electrode designs of AC- and DC-based circuits incorporated into the PDMS block are proposed. We investigate the effect of frequency and voltage on the degree of deflection and separation efficiency of the emulsions. We show that the fabricated microcapsules can be used as templates to build synthetic lipid bilayer model membranes that more accurately mimic physiological conditions. In addition, our microfluidic-based device integrated with on-board electronics can be used as an essential component in high-speed screening bioassays.


2020 ◽  
Author(s):  
Reham AlTamime ◽  
Vincent Marmion ◽  
Wendy Hall

BACKGROUND Mobile apps and IoT-enabled smartphones technologies facilitate collecting, sharing, and inferring from a vast amount of data about individuals’ location, health conditions, mobility status, and other factors. The use of such technology highlights the importance of understanding individuals’ privacy concerns to design applications that integrate their privacy expectations and requirements. OBJECTIVE This paper explores, assesses, and predicts individuals’ privacy concerns in relation to collecting and disclosing data on mobile health apps. METHODS We designed a questionnaire to identify participants’ privacy concerns pertaining to a set of 432 mobile apps’ data collection and sharing scenarios. Participants were presented with 27 scenarios that varied across three categorical factors: (1) type of data collected (e.g. health, demographic, behavioral, and location); (2) data sharing (e.g., whether it is shared, and for what purpose); and, (3) retention rate (e.g., forever, until the purpose is satisfied, unspecified, week, or year). RESULTS Our findings show that type of data, data sharing, and retention rate are all factors that affect individuals’ privacy concerns. However, specific factors such as collecting and disclosing health data to a third-party tracker play a larger role than other factors in triggering privacy concerns. CONCLUSIONS Our findings suggest that it is possible to predict privacy concerns based on these three factors. We propose design approaches that can improve users’ awareness and control of their data on mobile applications


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Sign in / Sign up

Export Citation Format

Share Document