Vaca Muerta: An Emerging Shale Petroleum Reservoir

2021 ◽  
Author(s):  
Rahimah Binti Abd Karim ◽  
Roberto Aguilera

Abstract Argentina is ranked second globally in terms of technically recoverable shale gas, and fourth in shale oil (EIA 2015). The most prolific shale is the Vaca Muerta formation. The objective of this paper is to present geological and reservoir characterization, drilling and production strategies, as well as historical performance and economics of Vaca Muerta. The word petroleum as used in this paper includes oil, natural gas, and natural gas liquids. This paper describes natural fractures and their impact on hydrocarbon productivity. The successful commercial production from this unconventional resource has been driven by many factors, including regional geology, availability of advanced technology such as horizontal drilling and multi-stage hydraulic fracturing, as well as domestic and regional hydrocarbon demand (Sierra 2016). Vaca Muerta itself is very unique with multiple hydrocarbon windows from east to west, ranging from dry gas to wet gas, to light oil and black oil. The productivity of Vaca Muerta is benchmarked to some of the best US shale plays such as the Eagle Ford and the Marcellus. Vaca Muerta contains 1202 Tcf of risked gas in-place and 270 billion barrels of risked oil in-place. It is estimated that 308 Tcf and 16 billion barrels of these resources are technically recoverable (EIA 2015). To date, the total number of horizontal wells exceeds 600, mostly drilled in the black oil window (Secretaria de Energia de Argentina 2020; Wood Mackenzie 2020b). Dubbed the ‘golden goose’ of Argentina, the last decade has seen rapid exploration and development activities. The Argentina state oil company (YPF) leads the development in this region together with its partners. In 2019, production from Vaca Muerta reached 90,000 bbl/d of oil and 1180 MMcf/d of gas, contributing 21% of Argentina's total production (Secretaria de Energia de Argentina 2020; Wood Mackenzie 2020b). YPF predicted these rates would increase by 150% in 2022 (Rassenfoss 2018). Part of this increase will be contributed by La Amarga Chica block, where YPF and its partner, PETRONAS approved their 30-year master development plan in late 2018 to deliver 54,000 boe/d by 2022 (Zborowski 2019). This production increase has obviously been delayed due to the COVID-19 pandemic. The novelty of this paper is integration of geological and reservoir characterization, drilling and production strategies, as well as historical performance and economics of Vaca Muerta. It is concluded that oil and gas potential in the Vaca Muerta shale is significant and rivals the potential of some of the shales widely developed in the Unites States and Canada.

2019 ◽  
Vol 38 (2) ◽  
pp. 106-115 ◽  
Author(s):  
Phuong Hoang ◽  
Arcangelo Sena ◽  
Benjamin Lascaud

The characterization of shale plays involves an understanding of tectonic history, geologic settings, reservoir properties, and the in-situ stresses of the potential producing zones in the subsurface. The associated hydrocarbons are generally recovered by horizontal drilling and hydraulic fracturing. Historically, seismic data have been used mainly for structural interpretation of the shale reservoirs. A primary benefit of surface seismic has been the ability to locate and avoid drilling into shallow carbonate karsting zones, salt structures, and basement-related major faults which adversely affect the ability to drill and complete the well effectively. More recent advances in prestack seismic data analysis yield attributes that appear to be correlated to formation lithology, rock strength, and stress fields. From these, we may infer preferential drilling locations or sweet spots. Knowledge and proper utilization of these attributes may prove valuable in the optimization of drilling and completion activities. In recent years, geophysical data have played an increasing role in supporting well planning, hydraulic fracturing, well stacking, and spacing. We have implemented an integrated workflow combining prestack seismic inversion and multiattribute analysis, microseismic data, well-log data, and geologic modeling to demonstrate key applications of quantitative seismic analysis utilized in developing ConocoPhillips' acreage in the Delaware Basin located in Texas. These applications range from reservoir characterization to well planning/execution, stacking/spacing optimization, and saltwater disposal. We show that multidisciplinary technology integration is the key for success in unconventional play exploration and development.


Author(s):  
Griffin Beck ◽  
David Ransom ◽  
Kevin Hoopes

Abstract Natural gas production has increased dramatically in recent years due to advances in horizontal drilling and hydraulic fracturing techniques. There are still challenges that must be addressed by industry to better utilize these abundant natural gas resources. For example, due to the cost and complexity with piping installations from remote well sites to processing facilities (should they exist), natural gas is often flared at the site whereas the liquid hydrocarbons are stored in holding tanks. For the natural gas that is recovered and processed, there are currently economic benefits to exporting the gas to international markets, provided that the gas can be liquefied and shipped. While the number of liquefaction facilities has increased in recent years, additional liquefaction plants are needed. This paper introduces a novel liquefaction cycle that utilizes a supercritical carbon dioxide (sCO2) power cycle to provide power and initial stages of refrigeration to a natural gas liquefaction cycle. The liquefaction cycle uses a flow of CO2 extracted from the power cycle as well as natural gas to provide several stages of refrigeration capable of liquefying the process stream. The combined sCO2 power and liquefaction cycle is described in detail and initial cycle analyses are presented. The cycle performance is compared to small-scale natural gas liquefaction cycles and is shown to provide comparable performance to the reviewed cycles. Due to the compact nature of the sCO2 power cycle equipment, the sCO2 liquefaction cycle described herein can provide small, modular liquefaction plants that can be employed at individual well sites to liquefy and store the natural gas as opposed to flaring the gas.


2021 ◽  
Vol 21 (6) ◽  
pp. 4729-4739
Author(s):  
Nur H. Orak ◽  
Matthew Reeder ◽  
Natalie J. Pekney

Abstract. The United States has experienced a sharp increase in unconventional natural gas (UNG) development due to the technological development of hydraulic fracturing. The objective of this study is to investigate the emissions at an active Marcellus Shale well pad at the Marcellus Shale Energy and Environment Laboratory (MSEEL) in Morgantown, West Virginia, USA. Using an ambient air monitoring laboratory, continuous sampling started in September 2015 during horizontal drilling and ended in February 2016 when wells were in production. High-resolution data were collected for the following air quality contaminants: volatile organic compounds (VOCs), ozone (O3), methane (CH4), nitrogen oxides (NO and NO2), and carbon dioxide (CO2), as well as typical meteorological parameters (wind speed and direction, temperature, relative humidity, and barometric pressure). Positive matrix factorization (PMF), a multivariate factor analysis tool, was used to identify possible sources of these pollutants (factor profiles) and determine the contribution of those sources to the air quality at the site. The results of the PMF analysis for well pad development phases indicate that there are three potential factor profiles impacting air quality at the site: natural gas, regional transport/photochemistry, and engine emissions. There is a significant contribution of pollutants during the horizontal drilling stage to the natural gas factor. The model outcomes show that there is an increasing contribution to the engine emission factor over different well pad drilling periods through production phases. Moreover, model results suggest that the regional transport/photochemistry factor is more pronounced during horizontal drilling and drillout due to limited emissions at the site.


Author(s):  
L. Stajic ◽  
B. Đorđević ◽  
S. Ilić ◽  
D. Brkić

The paper examines the primary drivers and factors influencing the volatility of natural gas prices in the world from January 2007 to July 2020. In addition to the narrow dependence between crude oil and natural gas prices, the influence of renewable energy production and coal production on the price of natural gas has been studied. For that purpose, the method of multiple linear regression was used. The results show that the volatility of natural gas prices significantly depends on the type of the shock in the natural gas market, and that the total production of energy from renewable sources, production of coal and natural gas and the price of crude oil have a significant impact on the price of gas.


Sign in / Sign up

Export Citation Format

Share Document