Effect of Flue Gas on Steam Chamber Expansion in Steamflooding

SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Teng Lu ◽  
Zhengxiao Xu ◽  
Xiaochun Ban ◽  
Dongliang Peng ◽  
Zhaomin Li

Summary The expansion of the steam chamber is very important for the recovery performance of steamflooding. In this paper, we discuss 1D and 2D sandpack experiments to performed analyze the effect of flue gas on steam chamber expansion and displacement efficiency in steamflooding. In addition, we examine the effect of flue gas acting on the steam condensation characteristics. The results show that within a certain range of injection rate, flue gas can significantly enlarge the swept volume and oil displacement efficiency of steam. However, when the flue gas injection rate is excessively high (the ratio of gas injection rate to steam injection rate exceeds 4), gas channels may form, resulting in a decline of oil recovery from steamflooding. The results of the 2D visualization experiments reveal that the swept volume of the steam chamber during steamflooding was small, and the remaining oil saturation in the reservoir was high, so the recovery was only 28%. The swept volume of the steam chamber for flue-gas-assisted steamflooding was obviously larger than that of steamflooding, and the recovery of flue-gas-assisted steamflooding in 2D experiments could reach 40.35%. The results of the steam condensation experiment indicate that flue gas could reduce the growth and coalescence rates of steam-condensed droplets on the cooling wall and increase the shedding period of the droplets. Macroscopically, flue gas could reduce the heat exchange rate between the steam and the reservoir and inhibit the rapid condensation and heat exchange of the steam near the injection well. As a result, flue gas could expand the steam chamber into the reservoir for heating and displacing oil.

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianhua Qin ◽  
Jing Zhang ◽  
Shijie Zhu ◽  
Yingwei Wang ◽  
Tao Wan

Field observations discern that the oil production rate decreases substantially and water cut increases rapidly with the increase of steam injection cycles. Compared with steam drive, the advantage of flue gas (also called multi-component thermal gas) co-injection with steam is that flue gas can increase the reservoir pressure and expand the heating chamber. In this paper, the flue gas generated by fuel burning in the field was injected with steam to improve heavy oil recovery. This technique was investigated in the large laboratory 3D model and implemented in the field as well. The huff-n-puff process efficiency by flue gas, steam, and flue gas–steam co-injection was compared in the experiments. The field practice also demonstrated that the addition of non-condensable gas in the steam huff-n-puff process recovered more oil than steam alone. The temperature profile in the wellbore with flue gas injection is higher than that with steam injection since the low thermal conductivity of N2 reduces the heat loss. With the increase of stimulation cycles, the incremental oil recovery by flue gas injection declines significantly.


2012 ◽  
Vol 524-527 ◽  
pp. 1591-1597
Author(s):  
Jian Fen Du ◽  
Jing Chen Ding ◽  
Ping Guo ◽  
Yu Hong Du

Reservoir X is a fractured-porous dual-media reservoir. According to the geological conditions and exploration and development statuses of reservoir X, this paper designs a long-core experiment and then carries it on. As a result, the diffeSubscript textrent enhance displacement efficiency effects under different driving methods (water flooding, gas flooding, WAG, pulsed gas injection, gas slug flooding) and different driving media (flue gas, CO2) are obtained. The results show that among all those driving methods, water alternating CO2 injection (WAG) reaches the best effect. WAG has an injection rate of 0.8HCPV and enhances displacement efficiency by 26.93% on the basis of water flooding. The injection rate of gas slug/water flooding after CO2 slug flooding is 0.3HCPV and these two methods have similar good results, 13.66% and 13.95% respectively. So considering the economic factor, we draw a conclusion that water flooding after CO2 slug flooding is the optimum choice.


2004 ◽  
Vol 126 (2) ◽  
pp. 119-124 ◽  
Author(s):  
O. S. Shokoya ◽  
S. A. (Raj) Mehta ◽  
R. G. Moore ◽  
B. B. Maini ◽  
M. Pooladi-Darvish ◽  
...  

Flue gas injection into light oil reservoirs could be a cost-effective gas displacement method for enhanced oil recovery, especially in low porosity and low permeability reservoirs. The flue gas could be generated in situ as obtained from the spontaneous ignition of oil when air is injected into a high temperature reservoir, or injected directly into the reservoir from some surface source. When operating at high pressures commonly found in deep light oil reservoirs, the flue gas may become miscible or near–miscible with the reservoir oil, thereby displacing it more efficiently than an immiscible gas flood. Some successful high pressure air injection (HPAI) projects have been reported in low permeability and low porosity light oil reservoirs. Spontaneous oil ignition was reported in some of these projects, at least from laboratory experiments; however, the mechanism by which the generated flue gas displaces the oil has not been discussed in clear terms in the literature. An experimental investigation was carried out to study the mechanism by which flue gases displace light oil at a reservoir temperature of 116°C and typical reservoir pressures ranging from 27.63 MPa to 46.06 MPa. The results showed that the flue gases displaced the oil in a forward contacting process resembling a combined vaporizing and condensing multi-contact gas drive mechanism. The flue gases also became near-miscible with the oil at elevated pressures, an indication that high pressure flue gas (or air) injection is a cost-effective process for enhanced recovery of light oils, compared to rich gas or water injection, with the potential of sequestering carbon dioxide, a greenhouse gas.


2015 ◽  
Vol 733 ◽  
pp. 43-46
Author(s):  
Jiang Min Zhao ◽  
Tian Ge Li

In this paper, several aspects of the improvement of the oil recovery were analyzed theoretically based on the mechanism that equi-fluidity enhances the pressure gradient. These aspects include the increase of the flow rate and the recovery rate, of the swept volume, and of the oil displacement efficiency. Also, based on the actual situation, the author designed the oil displacement method with gathered energy equi-fluidity, realizing the expectation of enhancing oil recovery with multi-slug and equi-fluidity oil displacement method.


2021 ◽  
Author(s):  
Lijuan Huang ◽  
Zongfa Li ◽  
Shaoran Ren ◽  
Yanming Liu

Abstract The technology of air injection has been widely used in the second and tertiary recovery in oilfields. However, due to the injected air and natural gas will explode, the safety of the gas injection technology has attracted much attention. Gravity assisted oxygen-reduced air flooding is a new method that eliminates explosion risks and improves oil recovery in large-dip oil reservoirs or thick oil layers. The explosion limit data of different components of natural gas under high pressure were obtained through explosion experiments, which verified the suppression effect of oxygen-reduced air on explosions. The influence of natural gas composition and concentration on explosion limits was also investigated. In addition, a rotatable displacement device was used to study the feasibility of gravity assisted oxygen-reduced air injection for improving the heavy oil reservoirs recovery. Under pressure and temperature conditions of 20MPa and 371K, the sand-filled gravity flooding experiments with different dip angles were carried out using oxygen-reduced air with an oxygen content of 8%. The results show that with the increase of the reservoir dip, the pore volume of the injected fluid at the gas channeling point, the efficient development time of gas injection, and the final displacement efficiency of gas injection development all increase through gravity stabilization caused by gravity differentiation. In the presence of a dip angle, the cumulative oil production before the gas breakthrough point exceeded 80% of the oil production during the entire production process, indicating that gravity assisted oxygen-reduced air flooding is an effective and safe improving oil recovery method. Finally, the explosion risk of each link of the air injection process is analyzed, and the high-risk area and the low-risk area are determined.


2019 ◽  
Vol 38 (4) ◽  
pp. 801-818
Author(s):  
Ren-Shi Nie ◽  
Yi-Min Wang ◽  
Yi-Li Kang ◽  
Yong-Lu Jia

The steam chamber rising process is an essential feature of steam-assisted gravity drainage. The development of a steam chamber and its production capabilities have been the focus of various studies. In this paper, a new analytical model is proposed that mimics the steam chamber development and predicts the oil production rate during the steam chamber rising stage. The steam chamber was assumed to have a circular geometry relative to a plane. The model includes determining the relation between the steam chamber development and the production capability. The daily oil production, steam oil ratio, and rising height of the steam chamber curves influenced by different model parameters were drawn. In addition, the curve sensitivities to different model parameters were thoroughly considered. The findings are as follows: The daily oil production increases with the steam injection rate, the steam quality, and the degree of utilization of a horizontal well. In addition, the steam oil ratio decreases with the steam quality and the degree of utilization of a horizontal well. Finally, the rising height of the steam chamber increases with the steam injection rate and steam quality, but decreases with the horizontal well length. The steam chamber rising rate, the location of the steam chamber interface, the rising time, and the daily oil production at a certain steam injection rate were also predicted. An example application showed that the proposed model is able to predict the oil production rate and describe the steam chamber development during the steam chamber rising stage.


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1595-1612
Author(s):  
Zeinab Zargar ◽  
S. M. Farouq Ali

Summary In this paper, we introduce, for the first time, an analytical approach for evaluating the effect of confinement and well interference on the SAGD process and achieving a better understanding of the situation. In the well-confinement stage of SAGD, there is adjacent-chamber interference, the effective head of drainage decreases, and the heat-loss rate decreases or, in a conservative design, remains constant. Our objectives were to predict the oil-production rate, steam-injection rate, thermal efficiency, steam-chamber velocity, unsteady temperature profile, heat distribution, and the cumulative steam/oil ratio (CSOR). In this approach, heat transfer was coupled with fluid flow. The governing equations were Darcy's law, volumetric balance, and heat conduction—constitutive equations indicating the temperature dependence of some physical properties. Our model was developed on the basis of a moving-boundary problem. The predicted oil rate remained constant during the sideways-expansion phase, while the steam-injection rate had to be constantly increased. After a determined confinement time, the oil rate started to decline with time because the decreasing steam-chamber interface length was offset by a decreasing head. The unsteady temperature profiles from the model showed that lower temperatures were predicted ahead of the interface owing to the confinement effect. Also, the model showed that, for a small lateral well spacing, confinement occurred earlier and heat loss started decreasing sooner, resulting in a lower CSOR than for a large spacing. It was shown that, even though the oil rate declined faster in a confined model rather than in an unconfined model, the reservoir depleted faster, just like the angle between the steam-chamber interface and the horizon. The results were validated using experimental data reported in the literature.


2020 ◽  
Vol 9 (2) ◽  
pp. 80-87
Author(s):  
Ahmad Muraji Suranto ◽  
Boni Swadesi ◽  
Indah Widyaningsih ◽  
Ratna Widyaningsih ◽  
Sri Wahyu Murni ◽  
...  

Steam injection can be success in increasing oil recovery by determining the steam chamber growth. It will impact on the steam distribution and steam performance in covering hot areas in the reservoir.  An injection plan and a proper cyclic steam stimulation (CSS) schedule are critical in predicting how steam chamber can grow and cover the heat area. A reservoir simulation model will be used to understand how CSS really impact in steam chamber generation and affect the oil recovery. This paper generates numerous scenarios to see how steam working in heavy oil system particularly in unconsolidated sand reservoir. Combine the CSS method and steam injection continue investigate in this research. We will validate the scenarios based on the how fast steam chest can grow and get maximum oil recovery. Reservoir simulation resulted how steam chest behavior in unconsolidated sand to improve oil recovery; It concluded that by combining CSS and Steam Injection, we may get a faster steam chest growth and higher oil recovery by 61.5% of heavy oil system.


Sign in / Sign up

Export Citation Format

Share Document