Drilling Efficiently, Durably and Consistently Through Cherts and Conglomerates with PDC Bits is Possible

2021 ◽  
Author(s):  
Sebastien Reboul ◽  
Emad Ahmed Elabassi ◽  
Miguel Angel Tejedor ◽  
Kareem Hafez ◽  
Bruno Cuillier ◽  
...  

Abstract Drilling into harsh environment with heterogeneous formations including chert or conglomerate is usually a boundary that can't be crossed with standard PDC bit technology. This paper will show how an innovative PDC cutter shape combined with a novel 3D approach of cutting structure design have withstood this challenge and successfully replaced 16-in. traditional roller cone application in United Arab Emirates by the latest PDC technology delivering an average 35% improvement on Rate Of Penetration (ROP) while continuously drilling to Total Depth (TD) on each section. When drilling chert or conglomerate type of formation with a PDC drill bit, uneven load per cutters is detrimental to their integrity and results in short runs or brutal stop in the drilling operation triggering a trip for drill bit change. The new technology shown in this paper includes a unique hybrid combination of cutter shapes with a design arrangement of the cutting structure to allow for the pre-fracturing of any hard formation heterogeneity by 3D shaped cutters while standard cutters ensure a high level of cutting efficiency through their shearing action. This innovative concept has been intensively tested in the lab through single cutter and full bit scale drilling testing. In addition, in-house 3D bit simulation software has been used to optimize the cutting structure and assure performance within a wide range of drilling scenarios. Based on these simulations, an optimized design was manufactured for 16-in. directional applications usually tackled by roller cone drill bits and known for having heterogeneous cherty formations to drill throughout the end of the 5,000 ft section. Simulation results helped to validate the unique shaped cutters placement on the cutting structure to maximize the pre-fracturing effect. This design was run on Rotary Steerable System (RSS) and Positive Displacement Motor (PDM) assemblies and successfully drilled 5 wells in a challenging field of the United Arab Emirates offshore operations. 100% successful rate to reach TD in one run was achieved while increasing drastically the average ROP of the section by at least 35%. Moreover, the unique design configuration allowed to better control the directional behavior of the drill string, which resulted in a significant reduction in the overall cost per foot. A new boundary has been breached in several wells of a complex 16-in. chert and conglomerate application in the United Arab Emirates thanks to a years-long effort combining an innovative cutter technology, an optimized bit design process including a state-of-the-art 3D simulation software with lab and field experimental testing campaigns. By looking at the micro level structure of the rock destruction mechanism, a huge improvement has been obtained at the macro level of drilling operation economics.

2021 ◽  
Vol 11 (5) ◽  
pp. 2425
Author(s):  
Igor Bychkov ◽  
Alexander Kazakov ◽  
Anna Lempert ◽  
Maxim Zharkov

Among the micro-logistic transport systems, railway stations should be highlighted, such as one of the most important transport infrastructure elements. The efficiency of the transport industry as a whole depends on the quality of their operation. Such systems have a complex multi-level structure, and the incoming traffic flow often has a stochastic character. It is known that the most effective approach to study the operation of such systems is mathematical modeling. Earlier, we proposed an approach to transport hub modeling using multiphase queuing systems with a batch Markovian arrival process (BMAP) as an incoming flow. In this paper, we develop the method by applying more complex models based on queuing networks that allow us to describe in detail the route of requests within an object with a non-linear hierarchical structure. This allows us to increase the adequacy of modeling and explore a new class of objects—freight railway stations and marshalling yards. Here we present mathematical models of two railway stations, one of which is a freight railway station located in Russia, and the other is a marshalling yard in the USA. The models have the form of queuing networks with BMAP flow. They are implemented as simulation software, and a numerical experiment is carried out. Based on the numerical results, some “bottlenecks” in the structure of the studied stations are determined. Moreover, the risk of switching to an irregular mode of operation is assessed. The proposed method is suitable for describing a wide range of cargo and passenger transport systems, including river ports, seaports, airports, and multimodal transport hubs. It allows a primary analysis of the hub operation and does not need large statistical information for parametric identification.


2019 ◽  
Vol 267 ◽  
pp. 02001
Author(s):  
Liangli Xiao ◽  
Yan Liu ◽  
Zhuang Du ◽  
Zhao Yang ◽  
Kai Xu

This study combines specific high-rise shear wall residential projects with the Revit to demonstrate BIM application processes. The use of R-Star CAD may help to realize the link barrier of the building information model and the structural analysis software PKPM. Sequentially, the information supplement of the structural analysis model is completed by extracting the structural information with the Revit secondary development. By the collaborative design platform based on BIM technology, the paper examines the collision check of structural model, conducts collision analysis on other professional models and modifies the design scheme for conflict points. After the statistics of material usage, an optimized design is proposed. The findings of this paper could contribute to provide some reference for the specific application of BIM in structural design and realize the application of BIM technology in the process of building structure design.


2021 ◽  
Vol 9 (8) ◽  
pp. 831
Author(s):  
Zhuangzhuang Sun ◽  
Jie Yu ◽  
Fangping Tang

In order to study the influence of the position of the bulb on the hydraulic performance of asubmersible tubular pump device, based on a large-scale pumping station, two schemes—involving a front-mounted bulb and a rear-mounted bulb, respectively—were designed. The front-mounted scheme uses the GL-2008-03 hydraulic model and its conventional guide vane, while the rearmounted scheme uses the optimized design of a diffuser vane. The method of combining numerical simulation and experimental testing was used to analyze the differences between the external and internal characteristics of the two schemes. The results show that, under the condition of reasonable diffusion guide vane design, the efficiency under the rear-mounted scheme is higher than that under the front-mounted scheme, where the highest efficiency difference is about 1%. Although the frontmounted bulb scheme reduces the hydraulic loss of the bulb section, the placement of the bulb on the water inlet side reduces the flow conditions of the impeller. Affected by the circulation of the guide vane outlet, the hydraulic loss of the outlet channel is greater than the rear-mounted scheme. The bulb plays a rectifying function when the bulb is placed behind, which greatly eliminates the annular volume of the guide vane outlet, and the water outlet channel has a smaller hydraulic loss. In the front-mounted scheme, the water flow inside the outlet channel squeezes to the outer wall, causing higher entropy production near the outer wall area. The entropy production of the rear-mounted scheme is mainly in the bulb section and the bulb support. This research can provide reference for the design and form selection of a submersible tubular pump device, which has great engineering significance.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2266
Author(s):  
Hongshen Li ◽  
Hongrui Liu ◽  
Yufang Li ◽  
Jilin Nan ◽  
Chen Shi ◽  
...  

Extracting ethanol by steam directly from fermented solid-state bagasse is an emerging technology of energy-efficient bioethanol production. With continuous solid-state distillation (CSSD) approach, the vapor with more than 25 wt% ethanol flows out of the column. Conventionally, the vapor was concentrated to azeotrope by rectification column, which contributes most of the energy consumption in ethanol production. As an alternative, a process integrating CSSD and vapor permeation (VP) membrane separation was tested. In light of existing industrial application of NaA zeolite hydrophilic membrane for dehydration, the prospect of replacing rectification operation with hydrophobic membrane for ethanol enriching was mainly analyzed in this paper. The separation performance of a commercial PDMS/PVDF membrane in a wide range of ethanol–water-vapor binary mixture was evaluated in the experiment. The correlation of the separation factor and permeate flux at different transmembrane driving force was measured. The mass and energy flow sheet of proposed VP case and rectification case were estimated respectively with process simulation software based on experimental data. Techno-economic analysis on both cases was performed. The results demonstrated that the additional VP membrane cost was higher than the rectification column, but a lower utilities cost was required for VP. The discount payback period of supplementary cost for VP case was determined as 1.81 years compared with the membrane service lifetime of 3 years, indicating that the hybrid CSSD-VP process was more cost effective and energy efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nicola Caterino ◽  
Mariacristina Spizzuoco ◽  
Julian M. Londoño ◽  
Antonio Occhiuzzi

This work focuses on the issues to deal with when approaching experimental testing of structures equipped with semiactive control (SA) systems. It starts from practical experience authors gained in a recent wide campaign on a large scale steel frame structure provided with a control system based on magnetorheological dampers. The latter are special devices able to achieve a wide range of physical behaviours using low-power electrical currents. Experimental activities involving the use of controllable devices require special attention in solving specific aspects that characterize each of the three phases of the SA control loop: acquisition, processing, and command. Most of them are uncommon to any other type of structural testing. This paper emphasizes the importance of the experimental assessment of SA systems and shows how many problematic issues likely to happen in real applications are also present when testing these systems experimentally. This paper highlights several problematic aspects and illustrates how they can be addressed in order to achieve a more realistic evaluation of the effectiveness of SA control solutions. Undesired and unavoidable effects like delays and control malfunction are also remarked. A discussion on the way to reduce their incidence is also offered.


2016 ◽  
Vol 877 ◽  
pp. 668-673
Author(s):  
Bo Liu ◽  
Zhong Cai Qiu ◽  
Qin Yang ◽  
Ke Wang ◽  
Xian He Wu

An aluminium cross car beam (CCB) for new energy is designed with CATIA. And then,modal analysis is taken by using simulation software-NASTRAN. As nature frequencies can't meet the design target, optimization is performed according to the modal strain energy contour. After structure is strengthen, the first vertical nature frequency of the aluminum CCB(mounted on trimmed car body,with closures and interiors) reaches 35.4Hz.While the first lateral nature frequency reaches 36.5 Hz. Besides,comparing to steel CCB,the weight of the aluminum CCB reduces by4.4 kilogram.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 735
Author(s):  
Ping Ding ◽  
Xin Wang

Conventional sensor structure design and related fracture mechanics analysis are based on the single J-integral parameter approach of elastic-plastic fracture mechanics (EPFM). Under low crack constraint cases, the EPFM one-parameter approach generally gives a stress overestimate, which results in a great cost waste of labor and sensor components. The J-A two-parameter approach overcomes this limitation. To enable the extensive application of the J-A approach on theoretical research and sensor engineering problem, under small scale yielding (SSY) conditions, the authors developed an estimate method to conveniently and quickly obtain the constraint (second) parameter A values directly from T-stress. Practical engineering application of sensor structure analysis and design focuses on three-dimensional (3D) structures with biaxial external loading, while the estimate method was developed based on two-dimensional (2D) plain strain condition with uniaxial loading. In the current work, the estimate method was successfully extended to a 3D structure with biaxial loading cases, which is appropriate for practical sensor design. The estimate method extension and validation process was implemented through a thin 3D single edge cracked plate (SECP) specimen. The process implementation was completed in two specified planes of 3D SECP along model thickness. A wide range of material and geometrical properties were applied for the extension and validation process, with material hardening exponent value 3, 5 and 10, and crack length ratio 0.1, 0.3 and 0.7.


2013 ◽  
Vol 6 (2) ◽  
pp. 10-15
Author(s):  
Yury Sergeevich Astakhov ◽  
Yevgeny Leonidovich Akopov ◽  
Aleksandr Anatolevich Ivanov ◽  
Mariya Alexeevna Smirnova ◽  
Leonid Nikolaevich Panteleev ◽  
...  

Retinal photocoagulation is believed to be one of most efficient methods to treat many retinal abnormalities. By now, a number of lasers operating at different wavelengths, irradiation intensities, and exposure times have been tested in search of optimal parameters for each type of retinal photocoagulation. Taking into consideration a wide range of such parameters, the primary objective of the present study was to develop a device that would combine the potentials of different lasers into a single universal laser-assisted coagulator (ULAC) equally suitable for a wide diversity of retinal disease. Important issue would be the creation of an experimental model allowing an operative evaluation of the coagulating effect induced by the ULAC. The sources of coherent irradiation to be combined were DPSS and diode lasers (532 and 810 nm, respectively). Through two individual fibers, irradiation generated by each of the lasers entered the optical blender to be further directed to the target, now via a single fiber. The target termed the “surrogate of living tissue” was a mixture of donor human blood and chicken egg white, which corresponded, respectively, to the chromophore and thermocoagulating agent, both sensitive to laser beams at 532 and 810 nm. As a result, irradiation of surrogate of living tissue by a laser under the trial caused the formation of a coagulate and its firm adhesion to the coverslip, after that the coagulate was separated from the unaffected surrogate of living tissue followed by its 3D-analysis. In conclusion, the whole procedure, while being relatively non-expensive and easy to perform, has proved to be simple enough for testing of a wide spectrum of coagulation-inducing parameters, whatever laser was used. Moreover, even the initial experiments have shown the high efficiency of the ULAC as a potential candidate for the application in ophthalmological practice.


Author(s):  
Satenik Harutyunyan ◽  
Davresh Hasanyan

A non-linear theoretical model including bending and longitudinal vibration effects was developed for predicting the magneto electric (ME) effects in a laminate bar composite structure consisting of magnetostrictive and piezoelectric multi-layers. If the magnitude of the applied field increases, the deflection rapidly increases and the difference between experimental results and linear predictions becomes large. However, the nonlinear predictions based on the present model well agree with the experimental results within a wide range of applied electric field. The results of the analysis are believed to be useful for materials selection and actuator structure design of actuator in actuator fabrication. It is shown that the problem for bars of symmetrical structure is not divided into a plane problem and a bending problem. A way of simplifying the solution of the problem is found by an asymptotic method. After solving the problem for a laminated bar, formula that enable one to change from one-dimensional required quantities to three dimensional quantities are obtained. The derived analytical expression for ME coefficients depend on vibration frequency and other geometrical and physical parameters of laminated composites. Parametric studies are presented to evaluate the influences of material properties and geometries on strain distribution and the ME coefficient. Analytical expressions indicate that the vibration frequency strongly influences the strain distribution in the laminates, and that these effects strongly influence the ME coefficients. It is shown that for certain values of vibration frequency (resonance frequency), the ME coefficient becomes infinity; as a particular case, low frequency ME coefficient were derived as well.


Author(s):  
Eihab M. Fathelrahman ◽  
Khalid A. Hussein ◽  
Safwan Paramban ◽  
Timothy R. Green ◽  
Bruce C. Vandenberg

The United Arab Emirates (UAE) recently witnessed algal/phytoplankton blooms attributed to the high concentrations of Chlorophyll-a associated with the spread and accumulation of a wide range of organisms with toxic effects that influence ecological and fishing economic activities and water desalination along coastal areas.  This research explores the UAE coasts as a case study for the framework presented here. In this research, we argue that advances in satellite remote sensing and imaging of spatial and temporal data offer sufficient information to find the best-fit regression method and relationship between Chlorophyll-a concentration and a set of climatic and biological explanatory variables over time. Three functional forms of regression models were tested and analysed to reveal that the Log-Linear Model found to be the best fit providing the most statistically robust model compared to the Linear and the Generalised Least Square models.  Besides, it is useful to identify the factors Sea Surface temperature, Calcite Concentration, Instantaneous Photosynthetically Available Radiation, Normalized Fluorescence Line Height, and Wind Speed that significantly influence Chlorophyll-a concentration. Research results can be beneficial to aid decision-makers in building a best-fit statistical system and models of algal blooms in the study area. The study found results to be sensitive to the study’s temporal time-period length and the explanatory variables selected for the analysis.


Sign in / Sign up

Export Citation Format

Share Document