Qualification and Application of All Electric and Topside Less Subsea Multiphase Pump Technology in Subsea Factory Mission to Minimise the Life Cycle Cost

2021 ◽  
Author(s):  
Karthik Ilangovan ◽  
Mazlan Dindi ◽  
Alexander Fuglesang ◽  
Bastiaen Van Der Rest

Abstract In recent years, various operating companies have been working on the processes of "Simplification, Standardization, Automation, Digitalization, and Optimization in several elements". To achieve this, there are tremendous subsea technology developments going on all over the world in many areas such as; design in terms of size and weight, improvement in reliability, advanced materials, flow assurance, digital tools, real time condition monitoring and control, installation and operation. The development of Subsea technology continues to be an important part of subsea field development projects to reduce the life cycle costs, increase recovery, provide solution to long tieback problems and challenges. PETRONAS ("the Company") is pursuing an Upstream Life Cycle Cost (CAPEX/OPEX) reduction approach under the Facilities of Future (FOF) program and mission called "Subsea Factory". The FOF target is to reduce Upstream life cycle cost by 40% starting from 2025 and Subsea Factory is one of the enablers to contribute to the reduction. There are four primary technologies focused on Subsea Factory: Subsea Separation, Subsea Multiphase Pump, Water Injection and Subsea Storage. The Subsea Multiphase Pump is one of the prioritized technologies for Subsea Factory to contribute to a 40% reduction. Subsea multiphase pump technology has great potential to reduce the CAPEX/OPEX and increase oil recovery, but due to the high equipment cost, huge topside space requirement, reliability and operating issues become very challenging and limit its application to operating companies. The Company collaborates with FASTsubsea AS on a Joint Industry Project to develop and qualify "the World first All Electric & Topside-less Subsea Multiphase Pump Technology". The uniqueness about this technology compared to commonly installed subsea pump is that it requires much less topside space as there is no need for variable speed drives or barrier fluid hydraulic power units. This paper describes the qualification and application of All-electric & Topside-less subsea multiphase pump technology in the Company - Subsea Factory mission, including: pain point with conventional subsea multiphase pumpthe Joint Industrial Project initiative with respect to technology development to pilot test to maturityimplementation of this technology and value creation in upcoming field development projectthe case study and potential of this technology for the Company future field development project

2021 ◽  
Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Basement formation is known as the unique reservoir in the world. The fractured basement reservoir was contributed a large amount of oil and gas for Vietnam petroleum industry. However, the geological modelling and optimization of oil production is still a challenge for fractured basement reservoirs. Thus, this study aims to introduce the efficient workflow construction reservoir models for proposing the field development plan in a fractured crystalline reservoir. First, the Halo method was adapted for building the petrophysical model. Then, Drill stem history matching is conducted for adjusting the simulation results and pressure measurement. Next, the history-matched models are used to conduct the simulation scenarios to predict future reservoir performance. The possible potential design has four producers and three injectors in the fracture reservoir system. The field prediction results indicate that this scenario increases approximately 8 % oil recovery factor compared to the natural depletion production. This finding suggests that a suitable field development plan is necessary to improve sweep efficiency in the fractured oil formation. The critical contribution of this research is the proposed modelling and simulation with less data for the field development plan in fractured crystalline reservoir. This research's modelling and simulation findings provide a new solution for optimizing oil production that can be applied in Vietnam and other reservoirs in the world.


Author(s):  
Edward J. Reed

The U.S. Air Force and Pratt & Whitney Aircraft are currently engaged in developing technology to minimize low-cycle fatigue maintenance requirements in future gas turbine engines. The Life Cycle Cost/Damage Tolerance Assessment (LCC/DTA) program is directed toward furthering technology development in two important areas that relate to the overall life cycle cost of advanced Air Force weapon systems: life cycle cost modeling and analysis, and damage tolerance design (DTD). A major goal of the LCC/DTA program is to establish hot-section disk design criteria specifying acceptable levels for life and maintenance actions based on minimum life cycle cost. This paper discusses the methodology developed to evaluate the weapon system LCC impact of designing to damage tolerance criteria.


Author(s):  
G.Zh. Moldabayeva ◽  
◽  
A.Kh. Agzamov ◽  
R.T. Suleimenova ◽  
D.K. Elefteriadi ◽  
...  

This article discusses a digital geological model, the transfer of borehole data to the geological grid, and the modeling of the technology of alternating steam and water injection. Alternating injection involves the cyclic injection of steam and water into an injection well in high-viscosity oil fields. The essence of this technology is that during the steam injection for 2-4 months, the formation warms up, leading to a decrease in viscosity and an increase in oil mobility. Then comes the period of water injection, during which the production of already warmed oil continues and the formation pressure is maintained. For digital geological modeling, the following data were collected, processed and prepared: a list of wells that open the object of modeling, coordinates of wellheads, well altitudinal data, inclinometry of well trajectories, GМS data on wells, analysis of wells drilled with core sampling, and digitized seismic data (structural surfaces on the roof of stratigraphic horizons, parameter maps, contact surfaces, faults, structural maps on the roof of target horizons with faults, isochron maps, velocity maps).


2021 ◽  
Author(s):  
Gervasio Pimenta ◽  
Mohamad Hussain Ahmad ◽  
Akio Mizukami ◽  
Bogdan Andres

Abstract Glass Reinforced Epoxy (GRE), lining systems for API 5CT tubing have gained prominence in O&G industry, essentially due to the fact that GRE constitutes a physical barrier protecting the OCTG pipe from corrosive environment, and minimizing issues with scale deposition. ADNOC group companies have been building experience on the implementation of GRE Lined L-80 tubing by successfully using it in produced water disposal wells. Produced water is a highly corrosive medium due to dissolved CO2, H2S high to very high chloride content, high TDS, eventually containing bacteria. The corrosiveness of the fluid increases as the temperature increase from temperatures in the range of 30 – 50 degC at surface to reservoir temperature. The aggressiveness of this medium towards API 5CT L-80 or 13Cr / modified 13Cr increases with its contamination with oxygen. Dissolved oxygen is a strong depolarizer leading to high pitting rates if dissolved O2 content in the water is above 10 or 20ppb. Conventional completion of WDW in ADNOC Onshore is based on API 5CT L-80, and short life of the completion strings has been attributed to deficient water treatment (lack of oxygen scavenger, corrosion inhibitor unsuitable for downhole conditions. A life cycle cost analysis suggests that GRE lined OCTG could be a cost-effective solution for water injection. For this life cycle cost assessment, CAPEX (cost of L-80 completion string, combo corrosion inhibitor & oxygen scavenger skid and OPEX: cost of Combo chemical and monitoring activities for design life were considered, while achieving the required level of well integrity and lower operational safety risks (e.g. handling hazardous chemicals, monitoring activities)


2021 ◽  
Author(s):  
Nadir Husein ◽  
Evgeny Aleksandrovich Malyavko ◽  
Ruslan Rashidovich Gazizov ◽  
Anton Vitalyevich Buyanov ◽  
Aleksey Aleksandrovich Romanov ◽  
...  

Abstract Today, efficient field development cannot be managed without proper surveillance providing oil companies with important geological and engineering information for prompt decision-making. Once continuous production is achieved, it is necessary to maintain a consistently high level of oil recovery. As a rule, a reservoir pressure maintenance system is extensively implemented for this purpose over the entire area because of decreasing reservoir pressure. At the same time, it is important to adjust the water injection to timely prevent water cut increasing in production wells, while maintaining efficient reservoir pressure compensation across the field. That is why it is necessary to have a relevant inter-well hydrodynamic model as well as to quantify the water injection rate. There are many ways to analyse the efficiency of the reservoir pressure maintenance system, but not all of them yield a positive, and most importantly, a reliable result. It is crucial that extensive zonal production surveillance efforts generate a significant economic effect and the information obtained helps boost oil production. Thus, the main objective of this paper is to identify a method and conduct an effective study to establish the degree of reservoir connectivity and quantify the inter-well parameters of a low permeability tested field.


2015 ◽  
Vol 27 (1) ◽  
pp. 59-68
Author(s):  
Hassan Ziari ◽  
Hamid Behbahani ◽  
Amir Ali Amini

For economic evaluation of a highway development project, multiple criteria must be considered on a timeframe longer than the project implementation interval and a geographical area larger than the project zone. In this study, a framework is proposed based on the Network-Level Life Cycle Cost Analysis (NL-LCCA) to assess the effect of highway development projects on mobility, safety, economy, environment and other monetizable criteria. In this approach, project impacts are estimated within physical boundaries of highway network over the network life cycle. This framework can be used as a decision-making support for evaluation and ranking of pre-defined development projects, proposing new cost-effective development projects, assessment of cost efficiency of existing highway network and budget allocation optimization.


2015 ◽  
Vol 21 (4) ◽  
pp. 623-635 ◽  
Author(s):  
Daniel Słyś ◽  
Agnieszka Stec

Abstract Climate change, improper use of water resources, surface waters pollution as well as increase of water requirements are the results of growing population of people in the world. It causes water deficiency in majority of countries in the world, including Poland. Due to the water pollution advanced technologies for its treatment are in demand, what leads to increase of water price. In this connection, there are more often taken actions to reduce water consumption by using rainwater to flush toilets, wash cars, do laundry or water green areas. This publication presents results of Life Cycle Cost analysis of two variants of water supply systems designed for multi-family residential building situated in Rzeszow. In line with LCC methodology the calculations were made throughout the whole life-cycle of the building considering initial investment outlays intended for construction of water supply system as well as operation and maintenance costs. In the first of analyzed variants it was assumed that the system would be fed by municipal water supply network. In the second variant rainwater harvesting system for domestic use was additionally applied. Rainwater stored in the tank would be used in sanitary installation to flush toilets, what leads to lowering the costs of municipal water purchase, reducing fees for rainwater discharge to sewage system and consequently is beneficial for financial standing of the examined building.


Author(s):  
João Carlos von Hohendorff Filho ◽  
Denis José Schiozer

Well prioritization rules on integrated production models are required for the interaction between reservoirs and restricted production systems, thus predicting the behavior of multiple reservoir sharing facilities. This study verified the impact of well management with an economic evaluation based on the distinct prioritizations by reservoir with different fluids. We described the impact of the well management method in a field development project using a consolidated methodology for production strategy optimization. We used a benchmark case based on two offshore fields, a light oil carbonate and a black-oil sandstone, with gas production constraint in the platform. The independent reservoir models were tested on three different approaches for platform production sharing: (Approach 1) fixed apportionment of platform production and injection, (Approach 2) dynamic flow-based apportionment, and (Approach 3) dynamic flow-based apportionment, including economic differences using weights for each reservoir. Approach 1 provided the intermediate NPV compared with the other approaches. On the other hand, it provided the lowest oil recovery. We observed that the exclusion of several wells in the light oil field led to a good valuation of the project, despite these wells producing a fluid with higher value. Approach 2 provided the lower NPV performance and intermediate oil recovery. We found that the well prioritization based on flow failed to capture the effects related to the different valuation of the fluids produced by the two reservoirs. Approach 3, which handled the type of fluids similarly to Approach 1, provided a greater NPV and oil recovery than the other approaches. The weight for each reservoir applied to well prioritization better captured the gains related to different valuation of the fluids produced by the two reservoirs. Dynamic prioritization with weights performed better results than fixed apportionment to shared platform capacities. We obtained different improvements in the project development optimization due to the anticipation of financial returns and CAPEX changes, due mainly from adequate well apportionment by different management algorithm. Well management algorithms implemented in traditional simulators are not developed to prioritize different reservoir wells separately, especially if there are different economic conditions exemplified here by a different valuation of produced fluids. This valuation should be taken into account in the short term optimization for wells.


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 648-661 ◽  
Author(s):  
Leopoldo Sierra ◽  
Loyd East ◽  
M.Y.. Y. Soliman ◽  
David Kulakofsky

Summary Implementing water injection during the early stage of a new reservoir's development is a process that is gaining popularity around the world. This is especially true in Saudi Arabia, where water injection is used both to improve oil recovery and to maintain pressure by placing short or long horizontal water-injection wells around the reservoir flanks. For cases where water-injection wells are placed in reservoir flanks, some of the producing wells are perforated transverse to the water-injection wells to improve the oil recovery around the involved areas. For this specific exploitation strategy, there is a potential risk of water channeling from the injector to the producing well toe, which, once it happens, might jeopardize recovery efficiency. For the referenced exploitation strategy, a new completion methodology is proposed that considers the placement of a fracture barrier at the toe of the producing well to delay water intrusion and improve recovery efficiency. This paper discusses the use of nonconductive barrier fractures and the benefits of the completion methodology, supported with extensive simulations for the different scenarios.


2016 ◽  
Vol 845 ◽  
pp. 326-331 ◽  
Author(s):  
Peter F. Kaming ◽  
Juli Marliansyah

Analysis of the life cycle cost of a design process that is important in controlling the initial costs and future costs in possession of an investment project. Therefore, there should be a life cycle cost analysis study to determine the cost of any category contained in the hostel building project in the area of Islamic Hospital jimbunmedika Kediri and also see how much the total cost incurred by a development project in the area of hospital hostel Islam jimbunmedika Kediri ranging from the design stage to the technical life of hostels set .The purpose of this study is, identify the service life of the building material components hostels on Hospital Grounds JimbunMedika Kediri, and make long-term plans of the building life cycle cost hostels in the area Jimbun Medika Kediri Hospital. From the results of the research, there are three groups that make up the life cycle cost is the cost of building, operating costs, and the cost of maintenance and replacement. For a long-term plan the life cycle cost of the costs and the percentage obtained as follows, development cost Rp.4.290.000.000 (46%), operational costs Rp. 3.799.333.250 (28%), maintenance and replacement costs Rp. 2.590.900.000 (26%).


Sign in / Sign up

Export Citation Format

Share Document