Practical Wash Water & Demulsifer Optimization at Khurais Crude Processing Facility

2021 ◽  
Author(s):  
Hatem Abdullah Bajuaifer ◽  
Mohammed Abdullah Malki ◽  
Kamarul Amminudin

Abstract This paper covers practical demulsifer and wash water approach followed by Saudi Aramco Khurais producing facility to optimize the chemical and water consumption. This Paper is intended to: Share practical demulsifer and wash water optimization approach. Highlight how this approach enhanced the separation process and how it already helped Saudi Aramco to meet the product quality with minimal operating costs by optimizing operating parameters in the field. The basic idea of the optimization is to relax the oil - emulsified water separation in HPPT by allowing water carry over to the downstream equipment and vessels through minimizing the demulsifer dosage on the production header to increase the retention time. The optimization process includes manipulating different key parameters (controlled variables) which are demulsifer dosing rate (on production header and dehydrator), wash water dosing rate, de-salting train mixing valves differential pressure and transformers voltage with continues monitoring and corrective actions based on the export specification of BS&W and salts within pre-defined internal limits to avoid having off-spec product (Trial and Error) This approach resulted in decreasing the operating costs by reducing overall demulsifer dosage by 50%, and allowing the overall separation efficiency to be increased contributing towards enhanced separation. Various graphs included showing the full impact of optimizing the operating parameters on improved separation in dehydrator. From the water conservation, this process resulted in reducing non-potable wash water consumption for crude washing purposes by more than 20,000 gallon/day without compromising the crude specification. This optimization resulted in cost saving equivalent to around US$ 650,000 due to significant demulsifer reduction. Sustaining such an optimum performance proves to be a challenge and in this regard, the team is focusing heavily on the monitoring efforts that are equipped with the advisory features on what to do should the deviation exist from the stipulated target. This includes, among others, the alerting feature for immediate corrective actions by the team. Overall, this initiative succeeded in maintaining the facility crude quality specifications of BS&W and salts while reducing chemical operating costs, creating positive environmental impacts by saving non-potable wash water while increasing the assets utilization and reliability effectively.

2021 ◽  
Vol 18 (4) ◽  
pp. 887-899
Author(s):  
Yanling Tian ◽  
Jiekai Feng ◽  
Zexin Cai ◽  
Jiaqi Chao ◽  
Dawei Zhang ◽  
...  

AbstractReckless discharge of industrial wastewater and domestic sewage as well as frequent leakage of crude oil have caused serious environmental problems and posed severe threat to human survival. Various nature inspired superhy-drophobic surfaces have been successfully applied in oily water remediation. However, further improvements are still urgently needed for practical application in terms of facile synthesis process and long-term durability towards harsh environment. Herein, we propose a simple one-step dodecyl mercaptan functionalization method to fabricate Super-hydrophobic-Superoleophilic Copper Mesh (SSCM). The prepared SSCM possesses excellent water repellence and oil affinity, enabling it to successfully separate various oil-water mixtures with high separation efficiency (e.g., > 99% for hexadecane-water mixture). The SSCM retains high separating ability when hot water and strong corrosive aqueous solutions are used to simulate oil-water mixtures, indicating remarkable chemical durability of the dodecyl mercaptan functionalized copper mesh. Additionally, the efficiency can be well maintained during 50 cycles of separation, and the water repellence is even stable after storage in air for 120 days, demonstrating the reusability and long-term stability of the SSCM. Furthermore, the functionalized mesh also shows good mechanical robustness towards abrasion by sandpaper, and oil-water separation efficiency of > 96% can be obtained after 10 cycles of abrasion. The reported one-step dodecyl mercaptan functionalization could be a simple method for increasing the water repellence of copper mesh, and thereby be a great candidate for treating large-scale oily wastewater in harsh environments.


2021 ◽  
Author(s):  
Steinar Asdahl ◽  
Johann Jansen van Rensburg ◽  
Martin Einarson Waag ◽  
Rune Glenna Nilssen

Abstract Traditionally, produced water from production separators is handled by multiple steps and different technologies in order to meet the required quality for either discharge or reinjection of the water. The development of the latest Compact Flotation Unit (CFU) technology has unlocked the potential for savings on cost, complexity, footprint and weight for the produced water treatment system. The developed CFU technology has proven applicable through field testing as a single treatment technology for reducing Oil-in-Water (OiW) content directly from tie-in at separator and still meet stringent requirements for outlet OiW quality. Field tests were conducted with inlet OiW concentration ranging from 200-2000 ppm, achieving results in the range 2.5 to 21 ppm only with a two-stage latest generation CFU. Compared to a traditional produced water system setup consisting of de-oiling hydrocyclones and a horizontal degassing vessel, the savings in footprint and operational weight is estimated to 54 % and 53 % respectively utilizing a two-stage CFU for a system with a design capacity of 76.000 BWPD. Furthermore, the development of the latest generation CFU technology has enabled the retrofit concept, incorporating the developed CFU internals into existing gravity separation based produced water vessels, converting them to more efficient flotation vessels with increased capacity. For brownfield and debottlenecking applications, operators are challenged by increasing water cut from maturing wells, and as a result exceeding the facilities design capacity for produced water treatment. This challenge is often further reinforced by increasingly stricter environmental legislation for OiW content for discharge or re-injection. The retrofit concept will offer a highly cost-, footprint- and weight-efficient solutions to these challenges utilizing existing vessels. Benefits of the retrofit concept: Bring proven and unique performance of the technology to other produced water separation vessels helping the operators improve the separation efficiency and increase throughput while meeting discharge requirementsShort execution time compared to installation of new process equipmentLow cost compared to installation of new process equipmentUtilization of existing equipment saves valuable footprint.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 486-493
Author(s):  
Ting Liang ◽  
Biao Wang ◽  
Zhenzhong Fan ◽  
Qingwang Liu

Abstract A facile method for fabricating superhydrophobic and superoleophilic powder with 5A zeolite and stearic acid (SA) is reported in this study. The effect of different contents of SA on contact angle (CA) was investigated. The maximum water CA was 156.2°, corresponding to the optimum SA content of 1.5 wt%. The effects of SA and the mechanism of modified 5A zeolite powder by SA were analyzed by sedimentation analysis experiment, FTIR analysis, particle size analysis, and SEM characterization. The SA-modified 5A zeolite was used as an oil sorbent to separate oil–water mixture with potential use in floating oil. The separation efficiency was above 98%.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 709
Author(s):  
Asmat Ullah ◽  
Kamran Alam ◽  
Saad Ullah Khan ◽  
Victor M. Starov

A new method is proposed to increase the rejection in microfiltration by applying membrane oscillation, using a new type of microfiltration membrane with slotted pores. The oscillations applied to the membrane surface result in reduced membrane fouling and increased separation efficiency. An exact mathematical solution of the flow in the surrounding solution outside the oscillating membrane is developed. The oscillation results in the appearance of a lift velocity, which moves oil particles away from the membrane. The latter results in both reduced membrane fouling and increased oil droplet rejection. This developed model was supported by the experimental results for oil water separation in the produced water treatment. It was proven that the oil droplet concentration was reduced notably in the permeate, due to the membrane oscillation, and that the applied shear rate caused by the membrane oscillation also reduced pore blockage. A four-times lower oil concentration was recorded in the permeate when the membrane vibration frequency was 25 Hz, compared to without membrane vibration. Newly generated microfiltration membranes with slotted pores were used in the experiments.


Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 133
Author(s):  
Joanna Kacprzyńska-Gołacka ◽  
Anna Kowalik-Klimczak ◽  
Ewa Woskowicz ◽  
Piotr Wieciński ◽  
Monika Łożyńska ◽  
...  

Microfiltration (MF) membranes have been widely used for the separation and concentration of various components in food processing, biotechnology and wastewater treatment. The deposition of components from the feed solution and accumulation of bacteria on the surface and in the membrane matrix greatly reduce the effectiveness of MF. This is due to a decrease in the separation efficiency of the membrane, which contributes to a significant increase in operating costs and the cost of exploitative parts. In recent years, significant interest has arisen in the field of membrane modifications to make their surfaces resistant to the deposition of components from the feed solution and the accumulation of bacteria. The aim of this work was to develop appropriate process parameters for the plasma surface deposition of silver oxide (AgO) on MF polyamide membranes, which enables the fabrication of filtration materials with high permeability and antibacterial properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Hong ◽  
Zhu Liu ◽  
Yang Gao ◽  
Yubin Chen ◽  
Mingxun Zhuang ◽  
...  

Superhydrophobic sponge as potential absorbing material for oil/water separation is attracting great attention recently. However, there are still some challenges to feasibly fabricate superhydrophobic sponge with large scale and low cost. Herein, a novel photochromic superhydrophobic melamine sponge (PDMS-SP sponge) is fabricated by facilely dip-coating and thermocuring of hydroxyl-terminated polydimethylsiloxanes mixed with photochromic spiropyran. FT-IR, EDS, and XPS results confirm the successful coating of PDMS-SP upon melamine sponge. The resultant sponge not only possesses excellent water repellency with a contact angle of 154.5° and oil-water separation efficiency with an oil absorption capacity of 48–116 folds of itself weight, but also shows photochromic phenomenon between colorless and purple when it is successively exposed to UV irradiation and visible light.


2014 ◽  
Vol 9 (2) ◽  
pp. 179-191 ◽  
Author(s):  
S. Karimi ◽  
B. Ghobadian ◽  
G. Najafi ◽  
A. Nikian ◽  
R. Mamat

Abstract Bioethanol has been found to be a suitable substitute for gasoline in internal combustion engines. It could be used either in an undiluted form or blended with gasoline. To blend the ethanol and gasoline, the water content of ethanol should reach 0.5% or less. In the present research work, 3A Zeolite was used as an absorbent with vacuum distillation. The effects of the operating parameters such as temperature, vacuum pressure and vapor flow rate on ethanol–water separation were investigated. Final ethanol concentration was obtained at the end of every run as well as the concentration of outlet ethanol. Both linear regression and ANN design were used to determine the best fit for two final parameters. The optimum condition was obtained at 0.4 bar vacuum pressure and 20 l/min ethanol–water vapor flow rate. ANN model is more qualified to the simulation of outspread data while the linear regression is not. L10L10 mode and L5T10 mode provide the best results for final concentration and total time, respectively. The Trainlm Algorithm like the previous research training algorithm is the best.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 775 ◽  
Author(s):  
Fei Sun ◽  
Ting-Ting Li ◽  
Haitao Ren ◽  
Qian Jiang ◽  
Hao-Kai Peng ◽  
...  

This study aims to produce polypropylene (PP)/titanium dioxide (TiO2) melt-blown membranes for oil/water separation and photocatalysis. PP and different contents of TiO2 are melt-blended to prepare master batches using a single screw extruder. The master batches are then fabricated into PP/TiO2 melt-blown membranes. The thermal properties of the master batches are analyzed using differential scanning calorimetry and thermogravimetric analysis, and their particle dispersion and melt-blown membrane morphology are evaluated by scanning electron microscopy. TiO2 loaded on melt-blown membranes is confirmed by X-ray diffraction (XRD). The oil/water separation ability of the melt-blown membranes is evaluated to examine the influence of TiO2 content. Results show that the thermal stability and photocatalytic effect of the membranes increase with TiO2 content. TiO2 shows a good dispersion in the PP membranes. After 3 wt.% TiO2 addition, crystallinity increases by 6.4%, thermal decomposition temperature increases by 25 °C compared with pure PP membranes. The resultant PP/TiO2 melt-blown membrane has a good morphology, and better hydrophobicity even in acetone solution or 6 h ultraviolet irradiation, and a high oil flux of about 15,000 L·m−2·h−1. Moreover, the membranes have stabilized oil/water separation efficiency after being repeatedly used. The proposed melt-blown membranes are suitable for mass production for separating oil from water in massively industrial dyeing wastewater.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 442 ◽  
Author(s):  
Mingguang Yu ◽  
Qing Wang ◽  
Wenxin Yang ◽  
Yonghang Xu ◽  
Min Zhang ◽  
...  

In this paper, we present a facile and efficient strategy for the fabrication of magnetic, durable, and superhydrophobic cotton for oil/water separation. The superhydrophobic cotton functionalized with Fe3O4 magnetic nanoparticles was prepared via the in situ coprecipitation of Fe2+/Fe3+ ions under ammonia solution on cotton fabrics using polyvinylpyrrolidone (PVP) as a coupling agent and hydrophobic treatment with tridecafluorooctyl triethoxysilane (FAS) in sequence. The as-prepared cotton demonstrated excellent superhydrophobicity with a water contact angle of 155.6° ± 1.2° and good magnetic responsiveness. Under the control of the external magnetic field, the cotton fabrics could be easily controlled to absorb the oil from water as oil absorbents, showing high oil/water separation efficiency, even in hot water. Moreover, the cotton demonstrated remarkable mechanical durable properties, being strongly friction-resistant against sandpaper and finger wipe, while maintaining its water repellency. This study developed a novel and efficient strategy for the construction of magnetic, durable, and superhydrophobic biomass-based adsorbent for oil/water separation, which can be easily scaled up for practical oil absorption.


Sign in / Sign up

Export Citation Format

Share Document