Simulation and Dimensional Analysis of Foam Processes in Porous Media

1998 ◽  
Vol 1 (02) ◽  
pp. 148-154 ◽  
Author(s):  
J.-X. Shi ◽  
W.R. Rossen

Abstract Foam can improve sweep efficiency in gas-injection improved-oil-recovery processes. The success of continuous-injection foam processes in overcoming gravity override in homogeneous, anisotropic (kx kz) radial or rectangular reservoirs depends on a single dimensionless number first proposed by Stone and Jenkins for gas flooding without foam. Their model fits foam simulation results remarkably well over a wide range in reservoir properties and geometry, flow rates, foam quality and foam strength, density difference between phases, initial reservoir pressure, and model for the mechanisms of foam collapse. This approach leads to optimal design strategies for such processes. It may be impossible, however, for a continuous-injection foam process to suppress gravity override in some cases, due to limitations on injection-well pressure. The possibility of gravity override within the foam bank should be considered in evaluating foam propagation in field trials of foam processes Introduction Gases, such as steam, carbon dioxide, natural gas, and nitrogen, are used as driving fluids in improved-oil-recovery (IOR) processes. However, these gases have high mobilities compared with oil and, thus, tend to finger through oil as well as to channel selectively through zones of high permeability. Also, because they are less dense than oil, these gases tend to migrate to the top of the reservoir, overriding oil-rich zones. Gas channeling and gravity override lead to poor sweep efficiency. Foam can significantly reduce gas mobility and overcome these problems under certain conditions, and therefore, improve sweep efficiency. This paper examines the ability of foam to overcome gravity override in homogeneous reservoirs. By inspectional analysis, Shook et al. obtain five scaling numbers rigorously sufficient to characterize a two-phase immiscible displacement process, given certain assumptions. These assumptions include incompressible, completely immiscible phases; a homogeneous, rectangular, horizontal, possibly anisotropic (kx kz) reservoir; absence of dispersion; and relative permeabilities that fit Corey expressions. (Six groups are required to characterize a process in a tilted reservoir.) For a foam process, the number of groups required would be much larger, due to the complexities of representing foam behavior. However, though a complete characterization is not guaranteed with fewer groups, it is possible that only a portion of these groups effectively govern behavior under many conditions. Shook et al. for instance, found that only three groups are needed to characterize waterfloods under a wide range of conditions, and Craig correlated waterflood sweep efficiency in terms of a gravity number and a reservoir aspect ratio. Suitable definitions for these two parameters for foam processes would be [1] [2] where Ng is gravity number, the ratio of the vertical driving force for segregation to horizontal pressure gradient; RL is reservoir aspect ratio; Pf is the lateral pressure gradient within the foam bank in the absence of gravity segregation; is the difference in densities between gas and liquid; g is gravitational acceleration; L and H are reservoir length and height, respectively; and kx and kz are absolute horizontal and vertical permeabilities. Note that Eq. 2 uses the first power of the ratio of horizontal to vertical permeability rather than the square root of this ratio as proposed by Shook et al. and Rossen et al.; the reason is discussed below. Others have noted the importance of the relative magnitude of viscous and gravity forces in foam processes and other processes. A similar analysis may apply to capillary crossflow with foam.

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
L. Guazzotto ◽  
J. P. Freidberg

Part 1 described a wide range of analytic tokamak equilibria modelling smooth limiter surfaces, double- and single-null divertor surfaces, arbitrary aspect ratio, elongation, triangularity and beta. Part 2 generalizes the analysis to further include edge pedestals and toroidal flow. Specifically, edge pedestals are allowed in the pressure, pressure gradient and toroidal current density. Also, an edge-localized contribution to the bootstrap current is treated. In terms of flow, analytic solutions are obtained for two cases: a $\gamma = 2$ adiabatic and a $\gamma = \infty $ incompressible energy conservation relation.


2021 ◽  
Author(s):  
Mohd Ghazali Abd Karim ◽  
Wahyu Hidayat ◽  
Alzahrani Abdulelah

Abstract The objective of this paper is to investigate the effects of interfacial tension dependent relative permeability (Kr_IFT) on oil displacement and recovery under different gas injection compositions utilizing a compositional simulation model. Oil production under miscible gas injection will result in variations of interfacial tension (IFT) due to changes in oil and gas compositions and other reservoir properties, such as pressure and temperature. Laboratory experiments show that changes in IFT will affect the two-phase relative permeability curve (Kr), especially for oil-gas system. Using a single relative permeability curve during the process from immiscible to miscible conditions will result in inaccurate gas mobility against water, which may lead to poor estimation of sweep efficiency and oil recovery. A synthetic sector compositional model was built to evaluate the effects of this phenomenon. Several simulation cases were investigated over different gas injection compositions (lean, rich and CO2), fluid properties and reservoir characterizations to demonstrate the impact of these parameters. Simulation model results show that the application of Kr_IFT on gas injection simulation modelling has captured different displacement behavior to provide better estimation of oil recovery and identify any upside potential.


2021 ◽  
Author(s):  
Taniya Kar ◽  
Abbas Firoozabadi

Abstract Improved oil recovery in carbonate rocks through modified injection brine has been investigated extensively in recent years. Examples include low salinity waterflooding and surfactant injection for the purpose of residual oil reduction. Polymer addition to injection water for improvement of sweep efficiency enjoys field success. The effect of low salinity waterflooding is often marginal and it may even decrease recovery compared to seawater flooding. Polymer and surfactant injection are often effective (except at very high salinities and temperatures) but concentrations in the range of 5000 to 10000 ppm may make the processes expensive. We have recently suggested the idea of ultra-low concentration of surfactants at 100 ppm to decrease residual oil saturation from increased brine-oil interfacial elasticity. In this work, we investigate the synergistic effects of polymer injection for sweep efficiency and the surfactant for interfacial elasticity modification. The combined formulation achieves both sweep efficiency and residual oil reduction. A series of coreflood tests is performed on a carbonate rock using three crude oils and various injection brines: seawater and formation water with added surfactant and polymer. Both the surfactant and polymer are found to improve recovery at breakthrough via increase in oil-brine interfacial elasticity and injection brine viscosification, respectively. The synergy of surfactant and polymer mixed with seawater leads to higher viscosity and higher oil recovery. The overall oil recovery is found to be a strong function of oil-brine interfacial viscoelasticity with and without the surfactant and polymer in sea water and connate water injection.


2011 ◽  
Vol 14 (03) ◽  
pp. 269-280 ◽  
Author(s):  
M.. Buchgraber ◽  
T.. Clemens ◽  
L. M. Castanier ◽  
A. R. Kovscek

Summary Of the various enhanced-oil-recovery (EOR) polymer formulations, newly developed associative polymers show special promise. We investigate pore and pore-network scales because polymer solutions ultimately flow through the pore space of rock to displace oil. We conduct and monitor optically water/oil and polymer-solution/oil displacements in a 2D etched-silicon micromodel. The micromodel has the geometrical and topological characteristics of sandstone. Conventional hydrolyzed-polyacrylamide solutions and newly developed associative-polymer solutions with concentrations ranging from 500 to 2,500 ppm were tested. The crude oil had a viscosity of 450 cp at test conditions. Our results provide new insight regarding the ability of polymer to stabilize multiphase flow. At zero and low polymer concentrations, relatively long and wide fingers of injectant developed, leading to early water break-through and low recoveries. At increased polymer concentration, a much greater number of relatively fine fingers formed. The width-to-length ratio of these fingers was quite small, and the absolute length of fingers decreased. At a larger scale of observation, the displacement front appears to be stabilized; hence, recovery efficiency improved remarkably. Above a concentration of 1,500 ppm, plugging of the micromodel by polymer and lower oil recovery was observed for both polymer types. For tertiary polymer injection that begins at breakthrough of water, the severe fingers resulting from water injection are modified significantly. Fingers become wider and grow in the direction normal to flow as polymer solution replaces water. Apparently, improved sweep efficiency of viscous oils is possible (at this scale of investigation) even after waterflooding. The associative- and conventional-polymer solutions improved oil recovery by approximately the same amount. The associative polymers, however, showed more-stable displacement fronts in comparison to conventional-polymer solutions.


2012 ◽  
Vol 15 (02) ◽  
pp. 229-242 ◽  
Author(s):  
Hao Cheng ◽  
G. Michael Shook ◽  
Malik Taimur ◽  
Varadarajan Dwarakanath ◽  
Bruce R. Smith

Summary Enhanced oil recovery (EOR) by surfactant flooding is the key to unlocking the next billion barrels of oil for Minas, one of the world's largest waterflood fields. An interwell tracer test (ITT-1) was performed before a surfactant field trial (SFT) to ensure well injectivity, demonstrate pattern confinement, quantitatively describe interwell connectivity and sweep efficiency, and provide sufficient data for reservoir evaluation. The tracer test was designed by numerical simulation. The test started in November 2009 and was terminated in February 2010. Analytical interpretation based on moment analysis and numerical reservoir simulations was conducted to evaluate ITT-1 results. Interpretation of the test results indicated various operational and reservoir properties that would have likely led to failure of the surfactant pilot. Hydraulic control of the SFT pattern was not achieved; in fact, less than 20% of one tracer was recovered. Many small-scale heterogeneities were identified that led to a lower-than-expected reservoir volume contacted. Unexpected communication between the target sand and the underlying sands outside the pattern also contributed to low tracer recovery and low swept volume. The tracer test was history matched, and additional features were incorporated in the reservoir model, and a new tracer design (ITT-2) was optimized to correct low sweep efficiency and poor hydraulic control. New information from ITT-2 will be used to further optimize operating conditions for SFTs. Failure to conduct the tracer tests would have likely revealed these unfavorable reservoir and operational conditions during the SFT. Had oil recovery been poor (because of low swept volume), it would have erroneously been attributed to a poor SFT rather than to the true causes. ITT-1 is considered successful because it allowed us to redesign injection/hydraulic control during the relatively inexpensive tracer test and thus evaluate the surfactant trial without bias.


2014 ◽  
Author(s):  
C.. Temizel ◽  
S.. Purwar ◽  
A.. Agarwal ◽  
A.. Abdullayev ◽  
K.. Urrutia ◽  
...  

Abstract Water alternating gas (WAG) injection has been widely used for the last 50 years throughout the world. The typical improved oil recovery (IOR) potential for WAG injection compared with water injection is 5 to 10%. It was originally intended to improve sweep efficiency during gas flooding, with intermittent slugs of water and gas designed to follow the same route through the reservoir. Mechanisms in WAG injection include microscopic effects, particularly in cases where three-phase flow and hysteresis are important for the IOR effect. Injection of gas usually aids an ongoing waterflood, and finding technical and commercial methods to reduce gas costs would be useful. Water injection alone tends to sweep the lower parts of a reservoir, while gas injected alone sweeps more of the upper parts of a reservoir because of gravitational forces. Gas represents a large fraction of the total cost, making WAG injection an expensive method. Thus, optimizing WAG injection is not only crucial in terms of recovery but also economics, especially where gas is expensive and/or limited. In this study, the significance of key components in a WAG injection process on SPE's 5th Comparative Solution Project (CSP) is presented that models the WAG process through a pseudo-miscible formulation by means of coupling a full-physics reservoir simulator with commercial optimization and uncertainty software. The results are analyzed and presented in a comparative manner by means of tornado charts showing the significance of each decision and uncertainty variable.


SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 743-746 ◽  
Author(s):  
Tianping (Tim) Huang ◽  
David E. Clark

Summary Waterflooding is a conventional improved-oil-recovery method. When water flows into pores of the media in formations occupied by hydrocarbons, clays and other formation fines are released and flow with the injection water. The released formation particles can accumulate and plug the pore throats in the flow channels, causing lower water sweep efficiency and reduced oil recovery. The solution to this problem is adding additives into the injection water to stabilize formation clays and fine particles at their sources during waterflooding operations. Recent studies and field applications have confirmed that some inorganic nanoparticles can efficiently control formation-fines migration in proppant fractures by coating the nanoparticles onto the proppants in hydraulic-fracturing and frac-pack applications. The nanoparticles have significantly high surface forces, including van der Waals forces and electrostatic forces, to attach themselves to the surface of commonly used proppants. The nanoparticles that adhere to the proppants adsorb migrating formation fines onto the proppant surface as the fines flow into the fracture. This paper provides detailed laboratory evaluations of the use of the same nanoparticles to enhance oil recovery by stabilizing formation clays and fines in waterflooding operations. As water drives hydrocarbons toward producers, the nanoparticles fix the formation fines at their sources in the water flow channels. When the water breakthrough happens at producers, fewer fines accumulate at the near-wellbore region of producers to choke the production of hydrocarbons, and the water sweep efficiency is increased. Laboratory tests show that the effluent of a sandpack containing nanoparticles is cleaner than a pack containing no nanoparticles, and the pressure drop across the sandpack containing nanoparticles is less than that for a pack containing no nanoparticles under the same flow rate of 5%KCl and the same sand composition.


2009 ◽  
Vol 49 (1) ◽  
pp. 453
Author(s):  
Pavel Bedrikovetsky ◽  
Mohammad Afiq ab Wahab ◽  
Gladys Chang ◽  
Antonio Luiz Serra de Souza ◽  
Claudio Alves Furtado

Injectivity formation damage with water-flooding using sea/produced water has been widely reported in the North Sea, the Gulf of Mexico and the Campos Basin in Brazil. The damage is due to the capture of solid/liquid particles by the rock with consequent permeability decline; it is also due to the formation of a low permeable external filter cake. Yet, moderate injectivity decline is not too damaging with long horizontal injectors where the initial injectivity is high. In this case, injection of raw or poorly treated water would save money on water treatment, which is not only cumbersome but also an expensive procedure in offshore projects. In this paper we investigate the effects of injected water quality on waterflooding using horizontal wells. It was found that induced injectivity damage results in increased sweep efficiency. The explanation of the phenomenon is as follows: injectivity rate is distributed along a horizontal well non-uniformly; water advances faster from higher rate intervals resulting in early breakthrough; the retained particles plug mostly the high permeability channels and homogenise the injectivity profile along the well. An analytical model for injectivity decline accounting for particle capture and a low permeable external filter cake formation has been implemented into the Eclipse 100 reservoir simulator. It is shown that sweep efficiency in a heterogeneous formation can increase by up to 5% after one pore volume injected, compared to clean water injection.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1818 ◽  
Author(s):  
Afshin Davarpanah

Among a wide range of enhanced oil-recovery techniques, polymer flooding has been selected by petroleum industries due to the simplicity and lower cost of operational performances. The reason for this selection is due to the mobility-reduction of the water phase, facilitating the forward-movement of oil. The objective of this comprehensive study is to develop a mathematical model for simultaneous injection of polymer-assisted nanoparticles migration to calculate an oil-recovery factor. Then, a sensitivity analysis is provided to consider the significant influence of formation rheological characteristics as type curves. To achieve this, we concentrated on the driving mathematical equations for the recovery factor and compare each parameter significantly to nurture the differences explicitly. Consequently, due to the results of this extensive study, it is evident that a higher value of mobility ratio, higher polymer concentration and higher formation-damage coefficient leads to a higher recovery factor. The reason for this is that the external filter cake is being made in this period and the subsequent injection of polymer solution administered a higher sweep efficiency and higher recovery factor.


2016 ◽  
Vol 19 (1) ◽  
pp. 161-168
Author(s):  
Tuan Van Nguyen ◽  
Xuan Van Tran

Gas injection has been widely used for Improved Oil Recovery (IOR)/ Enhanced Oil Recovery (EOR) processes in oil reservoirs. Unlike the conventional gas injection (CGI) modes of CGI and Water Alternating Gas (WAG), the Gas-Assisted Gravity Drainage (GAGD) process takes advantage of the natural segregation of reservoir fluids to provide gravity stable oil displacement. It has been proved that GAGD Process results in better sweep efficiency and higher microscopic displacement to recover the bypassed oil from un-swept regions in the reservoir. Therefore, dry gas has been considered for injection in fractured basement reservoir, Bao Den (BD) oil field located in Cuu Long basin through the GAGD process application. This field, with a 5-year production history, has nine production wells and is surrounded by a strong active edge aquifer from the North-West and the South East flanks. The depth of basement granite top is about 2,800 mTVDss with a vertical oil column of 1,500m. The pilot GAGD project has been designed to test an isolated domain in the BD fractured basement reservoir where there is favorable reservoir conditions to implement GAGD. Both reservoir simulation and Lab test have been run and confirmed the feasibility and the benefit of GAGD project in the selected area.The Dry gas will be periodically injected through existing wellwith high water cut production that located in the isolated area. As the injected gas rises to the top to form a gas zone pushing GOC (gas oil contact) downward, and may push WOC (water oil contact) to lower part of this producer (or even away from bottom of the well bore) could lower down water cut when switch this well back to production mode. The matched reservoir model with reservoir and fluid properties have been used to implement sensitivity analysis, the result indicated that there is significantly oil incremental and water cut reduction by GAGDapplication. Many different scenarios have run to find the optimal reservoir performance through GAGD process. Among these runs, the optimal scenario, which has distinct target, requires high levels of gas injection rate to attain the maximum cumulative oil production.


Sign in / Sign up

Export Citation Format

Share Document