The Marsh Funnel and Drilling Fluid Viscosity: A New Equation for Field Use

2000 ◽  
Vol 15 (01) ◽  
pp. 3-6 ◽  
Author(s):  
M.J. Pitt
2021 ◽  
Author(s):  
Farqad Hadi ◽  
Ali Noori ◽  
Hussein Hussein ◽  
Ameer Khudhair

Abstract It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works present valid and reliable results, they are expensive and time consuming. On the other hand, continuous and regular determination of the rheological mud properties can perform its essential functions during well construction. More uncertainties in planning the drilling fluid properties meant that more challenges may be exposed during drilling operations. This study presents two predictive techniques, multiple regression analysis (MRA) and artificial neural networks (ANNs), to determine the rheological properties of water-based drilling fluid based on other simple measurable properties. While mud density (MW), marsh funnel (MF), and solid% are key input parameters in this study, the output functions or models are plastic viscosity (PV), yield point (YP), apparent viscosity (AV), and gel strength. The prediction methods were demonstrated by means of a field case in eastern Iraq, using datasets from daily drilling reports of two wells in addition to the laboratory measurements. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error RMSE) have been used in this study. The current results of this study support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. However, a scattering around each fit curve is observed which proved that one rheological property alone is not sufficient to estimate other properties. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties based on simple and quick equipment as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2787
Author(s):  
Ahmed Gowida ◽  
Salaheldin Elkatatny ◽  
Khaled Abdelgawad ◽  
Rahul Gajbhiye

High-bentonite mud (HBM) is a water-based drilling fluid characterized by its remarkable improvement in cutting removal and hole cleaning efficiency. Periodic monitoring of the rheological properties of HBM is mandatory for optimizing the drilling operation. The objective of this study is to develop new sets of correlations using artificial neural network (ANN) to predict the rheological parameters of HBM while drilling using the frequent measurements, every 15 to 20 min, of mud density (MD) and Marsh funnel viscosity (FV). The ANN models were developed using 200 field data points. The dataset was divided into 70:30 ratios for training and testing the ANN models respectively. The optimized ANN models showed a significant match between the predicted and the measured rheological properties with a high correlation coefficient (R) higher than 0.90 and a maximum average absolute percentage error (AAPE) of 6%. New empirical correlations were extracted from the ANN models to estimate plastic viscosity (PV), yield point (YP), and apparent viscosity (AV) directly without running the models for easier and practical application. The results obtained from AV empirical correlation outperformed the previously published correlations in terms of R and AAPE.


Author(s):  
Shihui Sun ◽  
Jinyu Feng ◽  
Zhaokai Hou ◽  
Guoqing Yu

Cuttings are likely to accumulate and eventually form a cuttings bed in the highly-deviated section, which usually lead to high friction and torque, slower rate of penetration, pipe stuck and other problems. It is therefore necessary to study cuttings transport mechanism and improve hole cleaning efficiency. In this study, the cuttings-transport behaviors with pipe rotation under turbulent flow conditions in the highly deviated eccentric section were numerically simulated based on Euler solid–fluid model and Realizable [Formula: see text]–[Formula: see text] model. The resulted numerical results were compared with available experimental data in reported literature to validate the algorithm, and good agreement was found. Under the conditions of drill string rotation, cuttings bed surface tilts in the direction of rotation and distributes asymmetrically in annulus. Drill string rotation, drilling fluid flow rate, cuttings diameter, cuttings injection concentration and drilling fluid viscosity affect the axial velocity of drilling fluid; whereas drilling fluid tangential velocity is mainly controlled by the rotational speed of drill string. Increase in value of drill string rotation, drilling fluid flow rate or hole inclination will increase cuttings migration velocity. Notably, drill string rotation reduces cuttings concentration and solid–fluid pressure loss, and their variations are dependent on inclination, cuttings injection concentration, cuttings diameter, drilling fluid velocity and viscosity. However, when a critical rotation speed is reached, no additional contribution is observed. The results can provide theoretical support for optimizing hole cleaning and realizing safety drilling of horizontal wells and extended reach wells.


2011 ◽  
pp. 1-14 ◽  
Author(s):  
Ali Piroozian ◽  
Issham Ismail

Lencongan dari laluan tegak menyebabkan rincisan gerudi berkumpul pada bahagian bawah lubang telaga sehingga terbentuknya lapisan rincisan. Akibatnya, berlaku beberapa permasalahan operasi ketika berlangsungnya penggerudian. Daya seret dan kilas yang melampau, kesukaran yang dialami ketika penyorongan rentetan selongsong ke dalam lubang telaga, kesukaran untuk memperoleh operasi penyimenan yang baik, dan lekatan mekanikal paip gerudi adalah antara beberapa contoh lazim yang berkaitan dengan permasalahan terbabit. Sehubungan itu, pemahaman yang baik tentang parameter utama operasi yang mempengaruhi pembersihan lubang telaga adalah penting. Artikel ini mengetengahkan keputusan daripada kajian makmal yang telah dilaksanakan untuk menilai keberkesanan tiga jenis bendalir gerudi dalam menyingkir rincisan gerudi. Kajian makmal melibatkan penggunaan gelung legap aliran sepanjang 17 kaki dengan diameter 2 inci sebagai bahagian ujian. Bagi setiap uji kaji, prestasi pengangkutan rincisan (CTP - Cuttings Transport Performance) ditentukan menerusi pengukuran berat. Keputusan uji kaji dianalisis untuk memperoleh kesan menyeluruh ketiga-tiga parameter operasi, iaitu kelikatan bendalir gerudi, halaju bendalir, dan kecondongan lubang telaga. Kajian terkini membuktikan bahawa penggunaan bendalir gerudi berkelikatan tinggi berupaya meningkatkan CTP jika regim aliran adalah gelora. Walau bagaimanapun, peningkatan kelikatan dalam regim aliran peralihan atau laminar masing-masing mengurangkan CTP secara beransur atau mendadak. Kajian juga menunjukkan bahawa peningkatan sudut kecondongan dari 60° ke 90° memberikan kesan yang positif terhadap CTP. Parameter operasi yang memberikan kesan yang ketara dalam kajian ini ialah halaju aliran, dengan peningkatan kecil yang dialami oleh halaju aliran berjaya memberikan kesan positif yang nyata dalam pembersihan lubang telaga. Kata kunci: Kecekapan penyingkiran rincisan; prestasi pengangkutan rincisan; rincisan gerudi; bendalir gerudi; pembersihan lubang telaga Deviation from vertical path makes drill cuttings to accumulate on the lower side of the wellbore that induces the formation of cuttings bed. Subsequently, relative problems occur while drilling. Excessive torque and drag, difficulties in running casing in hole and accomplishing good cementing jobs and mechanical pipe sticking are few of the classical examples of such problems. Therefore, a comprehensive understanding of influential parameters on hole cleaning seems to be essential. This paper presents results of an experimental study that was carried out to evaluate cuttings removal efficiency of three types of drilling fluid. Experiments were conducted using a 17 feet long opaque flow loop of 2 inch diameter as test section. For each test, the amount of cuttings transport performance (CTP) was determined from weight measurements. Three operating parameters were considered, namely drilling fluid viscosity, fluid velocity, and hole inclination. It showed that the use of high-viscosity drilling fluid improved CTP if the flow regime was turbulent. However, increasing viscosity when flow regime was transient or laminar flow lessened CTP gradually or sharply respectively. It was also revealed that an incremental increase in hole inclination from 60° to 90° has a positive effect on CTP. The most influential parameter in this study was fluid velocity in which a small raise of fluid velocity resulted in a substantial positive effect on hole cleaning. Key words: Cuttings removal efficiency; cuttings transport performance; drill cuttings; drilling fluid; hole cleaning


2015 ◽  
Vol 8 (1) ◽  
pp. 451-456 ◽  
Author(s):  
Fanhe Meng ◽  
Aiguo Yao ◽  
Shuwei Dong

In order to carry out a series of key basic researches, a scientific ultra-deep drilling plan is being undertaken in China. Wellbore temperature is one of the key factors during the drilling process. In this paper, we established a twodimensional transient numerical model to predict the ultra-deep wellbore temperature distributions during circulation and shut-in stages. The simulation results indicate that the cooling effect of drilling fluid circulation is very obvious, especially during the inception phase. Drilling fluid viscosity has great influence on the temperature distributions during circulation stage: the lower the viscosity, the higher the bottomhole temperature. While drilling fluid displacement and inlet temperature have a little effect on the bottomhole temperature. During the shut-in stage, the wellbore temperature recovery is a slow process.


2011 ◽  
Vol 295-297 ◽  
pp. 1811-1816
Author(s):  
Yang Zhang ◽  
Bin Bin Wang ◽  
Yi Xiao Wang

PID (Particle Impact Drilling) is a new drilling technology which has been developing in the near decades. Utilizing steel particles with high speed to impact the rock stratum, this technology could be used in hard terrane. Compared with ordinary drilling technologies, PID has many advantages, such as long service life, high drilling speed, and low duty cycle, etc. During the process of recycling and separating, the steel particles will inevitably encounter a part of loss. In order to keep the sum of steel particle and working efficiency, the loss rules should be intensively studied. Based on experimental studies, this paper mainly works on the screening efficiency under various conditions including volumetric flow rate of drilling fluid, viscosity and steel particle ratio, etc. It was found that the loss rate of steel particle would increase with the increasing volumetric flow rate, viscosity and steel particle ratio. Furthermore, dimensional analysis was employed to analysis the relationship between loss rate and these factors and one empirical formula was proposed.


2011 ◽  
Vol 361-363 ◽  
pp. 381-385
Author(s):  
Zhen Zhong Ma ◽  
Yang Zhang ◽  
Bin Bin Wang

Particle Impact Drilling technology (PID) is a new drilling technology, which is designed especially to solve the oil and gas exploration under hard terrane. In PID system, the steel particles were added in the drilling fluid to impact rock. The particles would be recycled and put to use again, thus it is of great significance to adjust proper drilling fluid flow rate for steel particle’s reflux. The flow rate of drilling fluids carrying particles is influenced by the fluid viscosity, the annular gap between drill pipe and wellbore, the particle volume fraction and particle size, etc. This paper mainly studied the influence of the annular gap and the flow rate, while the other factors keep constant. Both experimental method and dimension theory were employed in the research. Furthermore, empirical formula was proposed to describe the mechanism.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Delong Zhang ◽  
Yu Wang ◽  
Junjie Sha ◽  
Yuguang He

High-temperature geothermal well resource exploration faces high-temperature and high-pressure environments at the bottom of the hole. The all-metal turbodrill has the advantages of high-temperature resistance and corrosion resistance and has good application prospects. Multistage hydraulic components, consisting of stators and rotors, are the key to the turbodrill. The purpose of this paper is to provide a basis for designing turbodrill blades with high-density drilling fluid under high-temperature conditions. Based on the basic equation of pseudo-fluid two-phase flow and the modified Bernoulli equation, a mathematical model for the coupling of two-phase viscous fluid flow with the turbodrill blade is established. A single-stage blade performance prediction model is proposed and extended to multi-stage blades. A Computational Fluid Dynamics (CFD) model of a 100-stage turbodrill blade channel is established, and the multi-stage blade simulation results for different fluid properties are given. The analysis confirms the influence of fluid viscosity and fluid density on the output performance of the turbodrill. The research results show that compared with the condition of clear water, the high-viscosity and high-density conditions (viscosity 16 mPa∙s, density 1.4 g/cm3) will increase the braking torque of the turbodrill by 24.2%, the peak power by 19.8%, and the pressure drop by 52.1%. The results will be beneficial to the modification of the geometry model of the blade and guide the on-site application of the turbodrill to improve drilling efficiency.


2012 ◽  
Vol 2 (3) ◽  
pp. 149-156 ◽  
Author(s):  
Ali Piroozian ◽  
Issham Ismail ◽  
Zulkefli Yaacob ◽  
Parham Babakhani ◽  
Ahmad Shamsul Izwan Ismail

Sign in / Sign up

Export Citation Format

Share Document