scholarly journals Long-term, Sustained Feeding by Asian citrus psyllid Disrupts Salicylic Acid Homeostasis in Sweet Orange

2019 ◽  
Author(s):  
Freddy Ibanez ◽  
Joon Hyuk Suh ◽  
Yu Wang ◽  
Lukasz L. Stelinski

Abstract Background Phloem-feeding insects are known to modulate the salicylic acid (SA) signaling pathway in various plant-insect interaction models. Diaphorina citri is a phloem feeding vector of a deadly phytopathogen and interactions with its host that may modulate plant defense are not well understood. The objectives of this study were to investigate the molecular mechanisms involved in transcriptional regulation of SA modification and activation of defense-associated responses in sweet orange ( Citrus sinensis ) exposed to various durations (7-, 14- and 150- days) of continuous feeding by D. citri .. Results We quantified expression of genes involved in SA pathway activation and subsequent modification, as well as, associated SA metabolites (SA methyl ester, 2,3-Dihydroxybenzoic acid and SA 2-O-β-D-glucoside). NPR1 and PR-1 expression was upregulated in plants exposed to continuous feeding by D. citri for 14 days. Expression of BSMT-like , MES1-like and DMR6-like oxygenase , as well as, accumulation of their respective SA metabolites (SA methyl ester, 2,3-Dihydroxybenzoic acid) was significantly higher in plants exposed to continuous feeding by D. citri for 150 days than in those without D. citri infestation. Concomitantly, expression of UGT74F2-like was significantly downregulated and its metabolite, salicylic acid 2-β-D-glucoside, was highly accumulated in trees exposed to 150 d of feeding compared to control trees without D. citri . Conclusions D. citri herbivory differentially regulated transcription and SA-metabolite accumulation in citrus leaves, depending on duration of insect feeding. Our results suggest that prolonged and uninterrupted exposure (150 d) of citrus to D. citri feeding suppressed plant immunity and inhibited growth, which may highlight the importance of vector suppression as part of HLB management in citrus.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Freddy Ibanez ◽  
Joon Hyuk Suh ◽  
Yu Wang ◽  
Lukasz L. Stelinski

Abstract Background Phloem-feeding insects are known to modulate the salicylic acid (SA) signaling pathway in various plant-insect interaction models. Diaphorina citri is a phloem feeding vector of the deadly phytopathogens, Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, and the interactions of D. citri with its host that may modulate plant defenses are not well understood. The objectives of this study were to investigate the molecular mechanisms involved in transcriptional regulation of SA modification and activation of defense-associated responses in sweet orange (Citrus sinensis) exposed to various durations (7-, 14- and 150- days) of continuous feeding by D. citri. Results We quantified expression of genes involved in SA pathway activation and subsequent modification, as well as, associated SA metabolites (SA methyl ester, 2,3-DHBA, and SA 2-O-β-D-glucoside). NPR1 and PR-1 expression was upregulated in plants exposed to continuous feeding by D. citri for 14 days. Expression of BSMT-like, MES1-like and DMR6-like oxygenase, as well as, accumulation of their respective SA metabolites (SA methyl ester, 2,3-DHBA) was significantly higher in plants exposed to continuous feeding by D. citri for 150 days than in those without D. citri infestation. Concomitantly, expression of UGT74F2-like was significantly downregulated and its metabolite, SA 2-β-D-glucoside, was highly accumulated in trees exposed to 150 d of feeding compared to control trees without D. citri. Conclusions D. citri herbivory differentially regulated transcription and SA-metabolite accumulation in citrus leaves, depending on duration of insect feeding. Our results suggest that prolonged and uninterrupted exposure (150 d) of citrus to D. citri feeding suppressed plant immunity and inhibited growth, which may highlight the importance of vector suppression as part of huanglongbing (HLB) management in citrus.


2019 ◽  
Author(s):  
Freddy Ibanez ◽  
Joon Hyuk Suh ◽  
Yu Wang ◽  
Lukasz L. Stelinski

Abstract Abstract Background Phloem-feeding insects are known to modulate the salicylic acid (SA) signaling pathway in various plant-insect interaction models. Diaphorina citri is a phloem feeding vector of the deadly phytopathogens, Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, and the interactions of D. citri with its host that may modulate plant defenses are not well understood. The objectives of this study were to investigate the molecular mechanisms involved in transcriptional regulation of SA modification and activation of defense-associated responses in sweet orange (Citrus sinensis) exposed to various durations (7-, 14- and 150- days) of continuous feeding by D. citri. Results We quantified expression of genes involved in SA pathway activation and subsequent modification, as well as, associated SA metabolites (SA methyl ester, 2,3-Dihydroxybenzoic acid and SA 2-O-β-D-glucoside). NPR1 and PR-1 expression was upregulated in plants exposed to continuous feeding by D. citri for 14 days. Expression of BSMT-like, MES1-like and DMR6-like oxygenase, as well as, accumulation of their respective SA metabolites (SA methyl ester, 2,3-Dihydroxybenzoic acid) was significantly higher in plants exposed to continuous feeding by D. citri for 150 days than in those without D. citri infestation. Concomitantly, expression of UGT74F2-like was significantly downregulated and its metabolite, salicylic acid 2-β-D-glucoside, was highly accumulated in trees exposed to 150 d of feeding compared to control trees without D. citri. Conclusions D. citri herbivory differentially regulated transcription and SA-metabolite accumulation in citrus leaves, depending on duration of insect feeding. Our results suggest that prolonged and uninterrupted exposure (150 d) of citrus to D. citri feeding suppressed plant immunity and inhibited growth, which may highlight the importance of vector suppression as part of huanglongbing (HLB) management in citrus. Keywords: salicylic acid, Diaphorina citri, plant defense, metabolomics, gene expression, vector-host interaction, huanglongbing.


2019 ◽  
Author(s):  
Freddy Ibanez ◽  
Joon Hyuk Suh ◽  
Yu Wang ◽  
Lukasz L. Stelinski

Abstract Abstract Background Phloem-feeding insects are known to modulate the salicylic acid (SA) signaling pathway in various plant-insect interaction models. Diaphorina citri is a phloem feeding vector of the deadly phytopathogens, Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, and the interactions of D. citri with its host that may modulate plant defenses are not well understood. The objectives of this study were to investigate the molecular mechanisms involved in transcriptional regulation of SA modification and activation of defense-associated responses in sweet orange ( Citrus sinensis ) exposed to various durations (7-, 14- and 150- days) of continuous feeding by D. citri . Results We quantified expression of genes involved in SA pathway activation and subsequent modification, as well as, associated SA metabolites (SA methyl ester, 2,3-DHBA, and SA 2-O-β-D-glucoside). NPR1 and PR-1 expression was upregulated in plants exposed to continuous feeding by D. citri for 14 days. Expression of BSMT-like , MES1-like and DMR6-like oxygenase , as well as, accumulation of their respective SA metabolites (SA methyl ester, 2,3-DHBA) was significantly higher in plants exposed to continuous feeding by D. citri for 150 days than in those without D. citri infestation. Concomitantly, expression of UGT74F2-like was significantly downregulated and its metabolite, SA 2-β-D-glucoside, was highly accumulated in trees exposed to 150 d of feeding compared to control trees without D. citri . Conclusions D. citri herbivory differentially regulated transcription and SA-metabolite accumulation in citrus leaves, depending on duration of insect feeding. Our results suggest that prolonged and uninterrupted exposure (150 d) of citrus to D. citri feeding suppressed plant immunity and inhibited growth, which may highlight the importance of vector suppression as part of huanglongbing (HLB) management in citrus. Keywords : salicylic acid, Diaphorina citri , plant defense, metabolomics, gene expression, vector-host interaction, huanglongbing.


2018 ◽  
Vol 31 (12) ◽  
pp. 1271-1279 ◽  
Author(s):  
Xiaochen Jia ◽  
Haihong Zeng ◽  
Wenxia Wang ◽  
Fuyun Zhang ◽  
Heng Yin

Chitosan oligosaccharide (COS) is an effective plant immunity elicitor; however, its induction mechanism in plants is complex and needs further investigation. In this study, the Arabidopsis–Pseudomonas syringae pv. tomato DC3000 (hereafter called DC3000) interaction was used to investigate the induction effect and the underlying mechanisms of COS. COS is effective in inducing resistance to DC3000 in Arabidopsis, and our results demonstrate that treatment with COS 3 days before DC3000 inoculation provided the most effective resistance. Disease severity in jar1 (jasmonic acid [JA]-deficient mutant), NahG, and sid2 (salicylic acid [SA]-deficient mutants) suggest both the SA and JA pathways are required for the Arabidopsis response to DC3000. COS pretreatment induced resistance in wild type (WT), jar1, and also, although to a lesser degree, in NahG and sid2 plants, implying that the SA and JA pathways play redundant roles in COS-induced resistance to DC3000. In COS-pretreated plants, expression of genes related to the SA pathway (PR1, PR2, and PR5) and SA content increased in both WT and jar1. Moreover, expression of genes related to the JA pathway (PDF1.2 and VSP2) and JA content both increased in WT and NahG. In conclusion, COS induces resistance to DC3000 in Arabidopsis by activating both SA- and JA-mediated pathways, although SA and JA pathways play redundant roles in this COS-induced resistance.


2015 ◽  
Vol 58 ◽  
pp. 101-113 ◽  
Author(s):  
Xiaoyu Liu ◽  
Kristin S. Rockett ◽  
Camilla J. Kørner ◽  
Karolina M. Pajerowska-Mukhtar

The plant hormone salicylic acid (SA) plays an essential role in the regulation of diverse biological processes throughout the entire lifespan of the plant. Twenty-five years ago, SA first emerged as an endogenous signal capable of inducing plant defence responses both at the site of infection and in the systemic tissue of the plant. Since then, SA-mediated signalling pathways have been extensively characterized and dissected using genetic and biochemical approaches. Current research is largely focused on the identification of novel SA downstream signalling genes, in order to understand their precise contributions to the phytohormonal cross-talk and signalling network. This will subsequently help us to identify novel targets that are important for plant health, and contribute to advances in modern agriculture. In this chapter we highlight recent advances in the field of SA biosynthesis and the discovery of candidates for systemic mobile signals. We also discuss the molecular mechanisms underlying SA perception. In addition, we review the novel SA signalling components that expand the scope of SA functions beyond plant immunity to include plant growth and development, endoplasmic reticulum (ER) stress, DNA repair and homologous recombination. Finally, we shed light on the roles of SA in epigenetically controlled transgenerational immune memory that has long-term benefits for plants.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Freddy Ibanez ◽  
Joon Hyuk Suh ◽  
Yu Wang ◽  
Monique Rivera ◽  
Mamoudou Setamou ◽  
...  

Abstract Background Plant immunity against pathogens and pests is comprised of complex mechanisms orchestrated by signaling pathways regulated by plant hormones [Salicylic acid (SA) and Jasmonic acid (JA)]. Investigations of plant immune response to phytopathogens and phloem-feeders have revealed that SA plays a critical role in reprogramming of the activity and/or localization of transcriptional regulators via post-translational modifications. We explored the contributing effects of herbivory by a phytopathogen vector [Asian citrus psyllid, Diaphorina citri] and pathogen [Candidatus Liberibacter asiaticus (CaLas)] infection on response of sweet orange [Citrus sinensis (L.) Osbeck] using manipulative treatments designed to mimic the types of infestations/infections that citrus growers experience when cultivating citrus in the face of Huanglongbing (HLB) disease. Results A one-time (7 days) inoculation access period with CaLas-infected vectors caused SA-associated upregulation of PR-1, stimulating defense response after a long period of infection without herbivory (270 and 360 days). In contrast, while repeated (monthly) ‘pulses’ of 7 day feeding injury by psyllids stimulated immunity in CaLas-infected citrus by increasing SA in leaves initially (up to 120 days), long-term (270 and 360 days) repeated herbivory caused SA to decrease coincident with upregulation of genes associated with SA metabolism (BMST and DMR6). Similarly, transcriptional responses and metabolite (SA and its analytes) accumulation in citrus leaves exposed to a continuously reproducing population of D. citri exhibited a transitory upregulation of genes associated with SA signaling at 120 days and a posterior downregulation after long-term psyllid (adults and nymphs) feeding (270 and 360 days). Conclusions Herbivory played an important role in regulation of SA accumulation in mature leaves of C. sinensis, whether or not those trees were coincidentally infected with CaLas. Our results indicate that prevention of feeding injury inflicted by D. citri from the tritrophic interaction may allow citrus plants to better cope with the consequences of CaLas infection, highlighting the importance of vector suppression as a component of managing this cosmopolitan disease.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1328
Author(s):  
Noushin Jahan ◽  
Yang Lv ◽  
Mengqiu Song ◽  
Yu Zhang ◽  
Liangguang Shang ◽  
...  

Salinity is a major abiotic stressor that leads to productivity losses in rice (Oryza sativa L.). In this study, transcriptome profiling and heterosis-related genes were analyzed by ribonucleic acid sequencing (RNA-Seq) in seedlings of a mega rice hybrid, Liang-You-Pei-Jiu (LYP9), and its two parents 93–11 and Pei-ai64s (PA64s), under control and two different salinity levels, where we found 8292, 8037, and 631 salt-induced differentially expressed genes (DEGs), respectively. Heterosis-related DEGs were obtained higher after 14 days of salt treatment than after 7 days. There were 631 and 4237 salt-induced DEGs related to heterosis under 7-day and 14-day salt stresses, respectively. Gene functional classification showed the expression of genes involved in photosynthesis activity after 7-day stress treatment, and in metabolic and catabolic activity after 14 days. In addition, we correlated the concurrence of an expression of DEGs for the bHLH transcription factor and a shoot length/salinity-related quantitative trait locus qSL7 that we fine-mapped previously, providing a confirmed case of heterosis-related genes. This experiment reveals the transcriptomic divergence of the rice F1 hybrid and its parental lines under control and salt stress state, and enlightens about the significant molecular mechanisms developed over time in response to salt stress.


2021 ◽  
pp. 030098582110063
Author(s):  
Francesco C. Origgi ◽  
Patricia Otten ◽  
Petra Lohmann ◽  
Ursula Sattler ◽  
Thomas Wahli ◽  
...  

A comparative study was carried out on common and agile frogs ( Rana temporaria and R. dalmatina) naturally infected with ranid herpesvirus 3 (RaHV3) and common toads ( Bufo bufo) naturally infected with bufonid herpesvirus 1 (BfHV1) to investigate common pathogenetic pathways and molecular mechanisms based on macroscopic, microscopic, and ultrastructural pathology as well as evaluation of gene expression. Careful examination of the tissue changes, supported by in situ hybridization, at different stages of development in 6 frogs and 14 toads revealed that the skin lesions are likely transient, and part of a tissue cycle necessary for viral replication in the infected hosts. Transcriptomic analysis, carried out on 2 naturally infected and 2 naïve common frogs ( Rana temporaria) and 2 naturally infected and 2 naïve common toads ( Bufo bufo), revealed altered expression of genes involved in signaling and cell remodeling in diseased animals. Finally, virus transcriptomics revealed that both RaHV3 and BfHV1 had relatively high expression of a putative immunomodulating gene predicted to encode a decoy receptor for tumor necrosis factor in the skin of the infected hosts. Thus, the comparable lesions in infected frogs and toads appear to reflect a concerted epidermal and viral cycle, with presumptive involvement of signaling and gene remodeling host and immunomodulatory viral genes.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Laura Piovani ◽  
Anna Czarkwiani ◽  
Cinzia Ferrario ◽  
Michela Sugni ◽  
Paola Oliveri

Abstract Background Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. Results Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. Conclusions We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 541 ◽  
Author(s):  
Renata Żyłła ◽  
Rafał Milala ◽  
Irena Kamińska ◽  
Marcin Kudzin ◽  
Marta Gmurek ◽  
...  

The aim of the work was to determine the influence of salicylic acid (SA) oxidation products on the effectiveness of their further removal in the membrane filtration process. Two commercial polyamide-based polymer membranes, HL (GE Osmonics) and TS80 (TriSepTM), were used and characterized by SEM microscopic analysis, contact angles, and free surface energy. The products of salicylic acid oxidation, 2,3- and 2,5-dihydroxybenzoic acid and catechol, were determined and their impact on the removal of unreacted salicylic acid in the nanofiltration process was investigated. It was also checked to what extent and why they were retained or not by the membranes. The results of the research have shown that the main product of salicylic acid oxidation, 2,3-dihydroxybenzoic acid, has a negative impact on the retention of salicylic acid in the nanofiltration stage, while the other product, catechol, improves SA retention. The determined values of contact angles correlate well with solubility (S) of the tested compounds, which increases in the following order SSA < S2,3-DHBA < SCAT, while the contact angle of the membrane decreases. Nevertheless, it has been shown that some oxidation products can penetrate the environment due to poorer membrane separation properties of these products.


Sign in / Sign up

Export Citation Format

Share Document