scholarly journals Patterns of Fish and Whale Consumption and Concentrations of Methylmercury in Hair Among Residents of Western Canadian Arctic Communities

2019 ◽  
Author(s):  
Emily Victoria Walker ◽  
Yuan Yuan ◽  
Safwat Girgis ◽  
Karen J. Goodman

Abstract Background. Methylmercury contamination of the environment represents a substantial environmental health concern. Human exposure to methylmercury occurs primarily through consumption of fish and marine mammals. Heavily exposed subgroups include sport or subsistence fishers residing in Arctic communities. We aimed to estimate the association of fish/whale consumption patterns of Canadian Arctic subsistence fishers with the internal dose of methylmercury as measured in hair. Methods. This research was conducted within ongoing community projects led by the CANHelp Working Group in Aklavik and Fort McPherson, Northwest Territories and Old Crow, YT. We interviewed each participant using a fish-focused food-frequency questionnaire during September-November 2016 and collected hair samples concurrently. Methylmercury was measured in the full-length of each hair sample using gas chromatography inductively-coupled plasma-mass spectrometry. Multivariable random-effects linear regression estimated beta-coefficients and 95% confidence intervals (CIs) for the effect of fish/whale consumption on hair-methylmercury concentrations. Results. In total, 101 participants provided hair samples and diet data. The mean number of fish/whale species eaten by participants was 3.5 (SD:1.9). The mean hair-methylmercury concentration was 0.60μg/g (SD:0.47). Fish/whale consumption was positively associated with hair-methylmercury concentration, after adjusting for sex, hair length and use of permanent hair treatments. Hair-methylmercury concentrations among participants who consumed the most fish/whale in each season ranged from 0.30- 0.50μg/g higher than those who consumed <1 meal/week. Conclusions. Hair-methylmercury concentrations were below the 6.0μg/g threshold for safe exposure defined by Health Canada, suggesting that fish/whale consumption patterns among participants are not increasing their risk of known serious health effects of methylmercury exposure.

2020 ◽  
Author(s):  
Emily Victoria Walker ◽  
Yuan Yuan ◽  
Safwat Girgis ◽  
Karen J. Goodman

Abstract Background: Methylmercury contamination of the environment represents a substantial environmental health concern. Human exposure to methylmercury occurs primarily through consumption of fish and marine mammals. Heavily exposed subgroups include sport or subsistence fishers residing in Arctic communities. We aimed to estimate the association of fish/whale consumption patterns of Canadian Arctic subsistence fishers with the internal dose of methylmercury as measured in hair. Methods: This research was conducted within ongoing community projects led by the CAN Help Working Group in Aklavik and Fort McPherson, Northwest Territories and Old Crow, Yukon. We interviewed each participant using a fish-focused food-frequency questionnaire during September-November 2016 and collected hair samples concurrently. Methylmercury was measured in the full-length of each hair sample using gas chromatography inductively-coupled plasma-mass spectrometry. Multivariable linear regression estimated beta-coefficients and 95% confidence intervals (CIs) for the effect of fish/whale consumption on hair-methylmercury concentrations. Results: Among 101 participants who provided hair samples and diet data, the mean number of fish/whale species eaten was 3.5 (SD:1.9). The mean hair-methylmercury concentration was 0.60μg/g (SD:0.47). Fish/whale consumption was positively associated with hair-methylmercury concentration, after adjusting for sex, hair length and use of permanent hair treatments. Hair-methylmercury concentrations among participants who consumed the most fish/whale in each season ranged from 0.30- 0.50μg/g higher than those who consumed <1 meal/week. Conclusions: In this population of Canadian Arctic subsistence fishers, hair-methylmercury concentration increased with fish/whale consumption, but the maximum concentrations were below Health Canada’s 6.0μg/g threshold for safe exposure.


2020 ◽  
Author(s):  
Emily Victoria Walker ◽  
Yuan Yuan ◽  
Safwat Girgis ◽  
Karen J. Goodman

Abstract Background. Methylmercury contamination of the environment represents a substantial environmental health concern. Human exposure to methylmercury occurs primarily through consumption of fish and marine mammals. Heavily exposed subgroups include sport or subsistence fishers residing in Arctic communities. We aimed to estimate the association of fish/whale consumption patterns of Canadian Arctic subsistence fishers with the internal dose of methylmercury as measured in hair. Methods. This research was conducted within ongoing community projects led by the CANHelp Working Group in Aklavik and Fort McPherson, Northwest Territories and Old Crow, Yukon. We interviewed each participant using a fish-focused food-frequency questionnaire during September-November 2016 and collected hair samples concurrently. Methylmercury was measured in the full-length of each hair sample using gas chromatography inductively-coupled plasma-mass spectrometry. Multivariable linear regression estimated beta-coefficients and 95% confidence intervals (CIs) for the effect of fish/whale consumption on hair-methylmercury concentrations. Results. Among 101 participants who provided hair samples and diet data, the mean number of fish/whale species eaten was 3.5 (SD:1.9). The mean hair-methylmercury concentration was 0.60μg/g (SD:0.47). Fish/whale consumption was positively associated with hair-methylmercury concentration, after adjusting for sex, hair length and use of permanent hair treatments. Hair-methylmercury concentrations among participants who consumed the most fish/whale in each season ranged from 0.30- 0.50μg/g higher than those who consumed <1 meal/week.Conclusions. In this population of Canadian Arctic subsistence fishers, hair-methylmercury concentration increased with fish/whale consumption, but the maximum concentrations were below Health Canada’s 6.0μg/g threshold for safe exposure.


2013 ◽  
Vol 20 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Hüseyin Altundağ ◽  
Mustafa Şahin Dündar ◽  
Can Serkan Keskin

Abstract The availability of Cd, Co, Cr, Cu, Mn, Ni, Pb, Fe and Zn of dust from vehicle air and pollen filters were investigated by four-step BCR (European Community Bureau of Reference) sequential extraction procedure. The acid-soluble, reducible, oxidizable, residual extracts were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES). The results indicated that both of air and pollen filter dusts contained higher concentration of Fe. To estimate the accuracy of the method the standard reference material BCR 701 was used. The results for recovery all the elements were found in the range 95.4-101.3%. The mean concentrations [μg/g] of trace elements in dusts from air filters/pollen filters were: cadmium 16.72/17.56; cobalt 24.22/23.72; chromium 46.02/55.44; copper 44.92/37.67; iron 1868.03/1854.92; manganese 231.2/213.64; nickel 38.89/45.27; lead 60.99/67.17; zinc 199.58/201.25. The results obtained are in agreement with data reported in the literature.


2016 ◽  
Vol 26 (3) ◽  
pp. 368-374 ◽  
Author(s):  
Ajay Kumar ◽  
Saurabh Narang ◽  
Rohit Mehra ◽  
Surinder Singh

Groundwater samples taken from 20 villages of Fazilka district, Punjab, India were analysed for radon concentration using RAD7, which is an electronic radon detector. Radon concentration varies from (1.4 ± 1.0) × 103 Bq/m3 to (4.9 ± 3.0) × 103 Bq/m3, which is much below the safe limits proposed by US Environmental Protection Agency (US EPA) and UN Scientific Committee on the Effects of Atomic Radiation. The mean annual effective dose calculated for these samples was also found to be within the limits provided by WHO and EU council. These samples were also analysed for concentration of certain heavy elements like As, Pb, Zn, Cu, Hg, Ni and Cd using inductively coupled plasma atomic emission spectrometer. Out of these, concentrations of As and Pb were found to exceed the permissible limits suggested by US EPA.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fatlume Berisha ◽  
Walter Goessler

In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.


Author(s):  
Magdalena Zielińska-Dawidziak ◽  
Magdalena Czlapka-Matyasik ◽  
Zofia Wojciechowska ◽  
Jędrzej Proch ◽  
Ryszard Kowalski ◽  
...  

Due to undesired influence, the accumulation of rare earth elements (REE) in the human body has been discussed recently. However, it is usually limited to the study of the population living where REE ores and mines are located. The aim of the experiment presented was to analyse the concentration of REE in the hair of children and teenagers living in two areas of Madagascar in relation to the place of residence, nutritional status, age and sex. REE concentration was determined in scalp hair of 262 of subjects (5–19 years old) by an inductively coupled plasma-optical emission spectrometer. The content of total REE in the Malagasy hair was in the range of 0.79–44.15 mg/kg. The nutritional status was evaluated by Cole’s index, and malnutrition of children was observed more often in village areas. The concentration of these elements was also determined in 20 samples for the estimation of environmental exposure. No significant differences were detected in the content of these elements in the studied regions, although the mean value was always higher in soil samples from the Antananariva region. The obtained data suggest dependence between REE concentration in the hair and age, and nutritional status of the examined subjects. Even if the observed correlations are weak, they contribute significant knowledge on the accumulation of REE in the bodies of children living in areas that are not recognised as deposits of these elements.


Author(s):  
Tatyana G. Krupnova ◽  
Olga V. Rakova ◽  
Kirill A. Bondarenko ◽  
Artem F. Saifullin ◽  
Darya A. Popova ◽  
...  

Air pollution impacts all populations globally, indiscriminately and has site-specific variation and characteristics. Airborne particulate matter (PM) levels were monitored in a typical industrial Russian city, Chelyabinsk in three destinations, one characterized by high traffic volumes and two by industrial zone emissions. The mass concentration and trace metal content of PM2.5 and PM10 were obtained from samples collected during four distinct seasons of 2020. The mean 24-h PM10 ranged between 6 and 64 μg/m3. 24-h PM2.5 levels were reported from 5 to 56 μg/m3. About half of the 24-h PM10 and most of the PM2.5 values in Chelyabinsk were higher than the WHO recommendations. The mean PM2.5/PM10 ratio was measured at 0.85, indicative of anthropogenic input. To evaluate the Al, Fe, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentration in PM2.5 and PM10, inductively coupled plasma mass spectrometry (ICP-MS) was used. Fe (337–732 ng/m3) was the most abundant component in PM2.5 and PM10 samples while Zn (77–206 ng/m3), Mn (10–96 ng/m3), and Pb (11–41 ng/m3) had the highest concentrations among trace elements. Total non-carcinogenic risks for children were found higher than 1, indicating possible health hazards. This study also presents that the carcinogenic risk for As, Cr, Co, Cd, Ni, and Pb were observed higher than the acceptable limit (1 × 10−6).


2020 ◽  
Vol 7 ◽  
Author(s):  
Rachel Ann Hauser-Davis ◽  
Lívia Figueiredo ◽  
Leila Lemos ◽  
Jailson Fulgêncio de Moura ◽  
Rafael C. C. Rocha ◽  
...  

Marine mammals are considered excellent ocean health sentinels and are ubiquitously exposed to chemical contaminants worldwide. The Guiana dolphin (Sotalia guianensis) is a near-threatened dolphin species from Brazil with unknown population size data. This indicates the need for assessments regarding deleterious effects that may arise from exposure to chemical contamination, especially metals. After entry in the organism, these compounds are subject to internal subcellular compartmentalization, which in turn alters their bioavailability. However, almost no assessments regarding subcellular metal contents in marine mammals are available. In this context, metal compartmentalization was determined in three subcellular fractions for three toxic elements, Cd, Hg and Pb, by inductively coupled plasma mass spectrometry (ICP-MS) in Guiana dolphin kidney and liver samples from Southeastern Brazil. Differential metal-detoxification mechanisms were observed for the three elements, where metallothionein (MT) detoxification was postulated for only for Pb, while Cd and Hg were poorly associated to MT, and mostly present in the insoluble fraction, indicating low bioavailability. This is the first report on subcellular metal compartmentalization in Guiana dolphins and indicates that critical biochemical detoxification data is obtained through subcellular fraction analyses in marine mammals. This indicates an emerging study field for this type of assessment, which may, in turn, aid in conservation efforts.


2019 ◽  
Vol 89 (3-4) ◽  
pp. 176-184
Author(s):  
Małgorzata Kwiecień ◽  
Wioletta Samolińska ◽  
Sławomir Puczkowski ◽  
Magdalena Waśko ◽  
T. Blicharski

Abstract. The authors of this paper decided to check whether the content of selected minerals in human hair is projected into the nutritional status of the body expressed as the BMI. The study focused on evaluating the content of calcium, sodium, potassium and magnesium in the hair of 7845 individuals in relation to their BMI. 5126 women and 2719 men aged from 18 to 92, domiciled throughout Poland, were involved in the study. Hair samples were taken from several points of the occipital scalp. Ca, Na, K and Mg in the hair were determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The content of Ca and Na in the hair of obese people (>30.0 kg·m2) was higher (323 mg·kg−1 and 180 mg·kg−1) in comparison with the groups of people with normal body weight and those grade 2 underweight (<16.9 kg·m2): 191 mg·kg−1 and 103 mg·kg−1 respectively. The highest level of K (317 mg·kg−1) was found in the hair of people classed as grade 2 underweight. The body mass index caused no differentiation in the content of Mg in hair. Positive correlations were found between Ca-Na, Ca-Mg and Na-Mg and between the BMI of the subjects and the content of Ca in hair (R = 0.163; p < 0.01) and between the BMI and the content of Na (R = 0.191; p < 0.01). On the other hand, a negative relation between K and the BMI was correlated only to an infinitesimal degree (R = −0.030, p < 0.01). The results point to a relationship between the body mass index and the content of Ca, Na and K in the hair of adults.


Sign in / Sign up

Export Citation Format

Share Document