Role of C1q in spleen-derived neutrophil infiltration and neuroinflammation after ICH in mice

2019 ◽  
Author(s):  
Jun Tang ◽  
Tiantian Luo ◽  
Junjun Geng ◽  
Bo Zhang ◽  
Yin Niu ◽  
...  

Abstract Background: Neuroinflammation is a major detrimental role of secondary brain injury after spontaneously intracerebral hemorrhage (ICH). Neutrophil infiltration plays a key role in the pathophysiology of ICH, but the coming resource and mechanism is unknown. This study aims to investigate whether spleen-derived neutrophil infiltration accelerated neuroinflammation and the role of C1q classical pathway.Methods: Male C57 mice were subjected to collagenase-induced ICH. If necessary, splenectomy was performed 2 weeks prior to ICH induction or anti-C1q neutralizing antibody (50mg/kg) was injected intravenously into the tail vein 15 minutes prior. Immunohistochemistry, Propidium Iodide staining, western blotting, ELISA and qRT-PCR were used to study the change of molecular proteins, neuronal cells and inflammatory factors. 7.0T animal MRI was used to assess hydrocephalus.Results: At 0h, 6h, 12h, 24h and 48h post ICH induction, we found a significant increasing tendency of microglia activation and neutrophil infiltration around hematoma and that C1q upregulation was correlated with neuronal decrease, which peaked at 24h after ICH. Here, we demonstrated spleen atrophy and upregulation of neutrophil in spleen 24h after ICH. Splenectomy prior to ICH mice resulted in significant decrease of microglia and neutrophil infiltration compared with that in group of sham-splenectomy. Moreover, both anti-C1q antibody and splenectomy significantly attenuated neutrophil infiltration and neuron death, restored synapse VGAT, alleviated hydrocephalus and inflammatory factors, such as IL-1β, TNF-α and IL-6 after ICH.Conclusion: The study demonstrated that spleen is a major source of brain neutrophil infiltration after ICH. C1q-targeted inhibition of classic complement pathway could prevent spleen-derived neutrophil infiltration and attenuate ICH induced neuroinflammation, which provides a novel therapeutic approach for hemorrhagical stroke.

2022 ◽  
Vol 23 (2) ◽  
pp. 921
Author(s):  
Shang-Hung Lin ◽  
Ji-Chen Ho ◽  
Sung-Chou Li ◽  
Yu-Wen Cheng ◽  
Chung-Yuan Hsu ◽  
...  

Psoriatic arthritis (PsA) results from joint destruction by osteoclasts. The promising efficacy of TNF-α blockage indicates its important role in osteoclastogenesis of PsA. WNT ligands actively regulate osteoclastogenesis. We investigated how WNT ligands activate osteoclasts amid the TNF-α milieu in PsA. We first profiled the expression of WNT ligands in CD14+ monocyte-derived osteoclasts (MDOC) from five PsA patients and five healthy controls (HC) and then validated the candidate WNT ligands in 32 PsA patients and 16 HC. Through RNA interference against WNT ligands in MDOC, we determined the mechanisms by which TNF-α exerts its effects on osteclastogenesis or chemotaxis. WNT5A was selectively upregulated by TNF-α in MDOC from PsA patients. The number of CD68+WNT5A+ osteoclasts increased in PsA joints. CXCL1, CXCL16, and MCP-1 was selectively increased in supernatants of MDOC from PsA patients. RNA interference against WNT5A abolished the increased MCP-1 from MDOC and THP-1-cell-derived osteoclasts. The increased migration of osteoclast precursors (OCP) induced by supernatant from PsA MDOC was abolished by the MCP-1 neutralizing antibody. WNT5A and MCP-1 expressions were decreased in MDOC from PsA patients treated by biologics against TNF-α but not IL-17. We conclude that TNF-α recruits OCP by increased MCP-1 production but does not directly activate osteoclastogenesis in PsA.


2019 ◽  
Vol 11 (515) ◽  
pp. eaax2945 ◽  
Author(s):  
Yi-Ling Chen ◽  
Danuta Gutowska-Owsiak ◽  
Clare S. Hardman ◽  
Melanie Westmoreland ◽  
Teena MacKenzie ◽  
...  

Targeted inhibition of cytokine pathways provides opportunities to understand fundamental biology in vivo in humans. The IL-33 pathway has been implicated in the pathogenesis of atopy through genetic and functional associations. We investigated the role of IL-33 inhibition in a first-in-class phase 2a study of etokimab (ANB020), an IgG1 anti–IL-33 monoclonal antibody, in patients with atopic dermatitis (AD). Twelve adult patients with moderate to severe AD received a single systemic administration of etokimab. Rapid and sustained clinical benefit was observed, with 83% achieving Eczema Area and Severity Index 50 (EASI50), and 33% EASI75, with reduction in peripheral eosinophils at day 29 after administration. We noted significant reduction in skin neutrophil infiltration after etokimab compared with placebo upon skin challenge with house dust mite, reactivity to which has been implicated in the pathogenesis of AD. We showed that etokimab also inhibited neutrophil migration to skin interstitial fluid in vitro. Besides direct effects on neutrophil migration, etokimab revealed additional unexpected CXCR1-dependent effects on IL-8–induced neutrophil migration. These human in vivo findings confirm an IL-33 upstream role in modulating skin inflammatory cascades and define the therapeutic potential for IL-33 inhibition in human diseases, including AD.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hao Huang ◽  
Yanqin Fan ◽  
Zhao Gao ◽  
Wei Wang ◽  
Ning Shao ◽  
...  

Abstract Background Studies have indicated that changed expression of hypoxia-inducible factor-1α (HIF-1α) in epithelial cells from the kidney could affect the renal function in chronic kidney disease (CKD). As Angiotensin II (Ang II) is a critical active effector in the renin-angiotensin system (RAS) and was proved to be closely related to the inflammatory injury. Meanwhile, researchers found that Ang II could alter the expression of HIF-1α in the kidney. However, whether HIF-1α is involved in mediating Ang II-induced inflammatory injury in podocytes is not clear. Methods Ang II perfusion animal model were established to assess the potential role of HIF-1α in renal injury in vivo. Ang II stimulated podocytes to observe the corresponding between HIF-1α and inflammatory factors in vitro. Results The expression of inflammatory cytokines such as MCP-1 and TNF-α was increased in the glomeruli from rats treated with Ang II infusion compared with control rats. Increased HIF-1α expression in the glomeruli was also observed in Ang II-infused rats. In vitro, Ang II upregulated the expression of HIF-1α in podocytes. Furthermore, knockdown of HIF-1α by siRNA decreased the expression of MCP-1 and TNF-α. Moreover, HIF-1α siRNA significantly diminished the Ang II-induced overexpression of HIF-1α. Conclusion Collectively, our results suggest that HIF-1α participates in the inflammatory response process caused by Ang II and that downregulation of HIF-1α may be able to partially protect or reverse inflammatory injury in podocytes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 586-586
Author(s):  
Lequn Li ◽  
Jin sub Kim ◽  
Vassiliki A Boussiotis

Abstract Abstract 586 A major challenge of the immune system is to fight pathogens and tumor antigens while preserving tolerance to self-antigen. T regulatory cells (Treg) are critical extrinsic regulators of immune tolerance and maintenance of lymphoid homeostasis. Recently it was determined that, when used as cell-based immunosuppressive therapy, Treg have a potent effect in preventing GvHD in patients undergoing allogeneic stem cell transplantation. However, several studies suggest that the Treg phenotype is not at end stage of differentiation. Treg can express and produce effector cytokines including IFN-γ and IL-17 under certain conditions, particularly in the context of inflammatory milieu, suggesting that Treg may convert into inflammatory mediators. IL-1β and TNF-α are critical inflammatory cytokines that have been implicated in GvHD. The precise role and the mechanism(s) via which these cytokines may affect development of GvHD remain unclear. In the presence study, we sought to determine whether IL-1β and TNF-α regulate the properties of Treg and specifically whether these cytokines affect Treg expansion and/or conversion into IL-17 producing cells. CD4+CD25+Treg cells were isolated from B6 mice and were stimulated with anti-CD3-plus-anti-CD28 mAbs in the presence of either media, IL-1β or TNF-α. Addition of either cytokine induced Treg proliferation as determined by CFSE. Assessment of intracellular IL-17 expression by flow cytometry and IL-17 production by ELISA revealed that IL-1β but not TNF-α induced conversion of Treg into IL-17 producing cells, suggesting that conversion was mediated via pathways distinct from those that regulate cell cycle progression. To evaluate conversion of Treg to IL-17 producers during antigen stimulation and to determine the role of IL-1β in this process, we used neutral culture conditions in which no exogenous cytokines were supplied. Treg cells isolated from Foxp3GFP-KI mouse were added to cultures of naive conventional CD4+ T cells (Tc) in the presence of APC and anti-CD3 mAb. We found that these conditions preferentially induced conversion of Treg to IL-17 producing cells. To determine the role of IL-1β in this conversion process, we used IL-1β neutralizing antibody. Addition of anti-IL-1β neutralizing antibody reduced IL-17 production to almost undetectable levels. Because it has exogenous IL-6 can induce IL-17 production by both Treg and Tc, we evaluated whether endogenous IL-6 was involved in the conversion of Treg into IL-17 producing cells in our system. Addition of a combination of IL-6 neutralizing and IL-6 receptor blocking antibodies did not affect IL-17 production, suggesting that the conversion process of Treg into IL-17 producing cells was dependent on endogenous IL-1β rather than IL-6. To determine whether IL-1β was mandatory for this process, we used T cells from IL-1R deficient mice. Individual culture of IL−1R−/− Tc or IL-1R−/− Treg with wild type (wt) APC and co-culture of IL-1R−/− Tc and IL-1R−/− Treg with wt APC did not result in detectable IL-17 production. Similarly, no IL-17 production was observed when wt instead of IL-1R−/− Tc were used. In contrast, substitution of IL-1R−/− Treg with wt Treg resulted in abundant IL-17 production. To investigate the in vivo biological relevance of our findings we adoptively transferred Treg cells from either congenic B6.PL mice or IL-1R1−/− mice into IL-1R1−/− recipients, which were then immunized with KLH in IFA. Three days after immunization both IL-1R−/− Treg and IL-1R−/− Tc cells were incapable of producing detectable levels of IL-17 or expressing RORγt, the key transcriptional factor of IL-17. In contrast, a significant percentage of IL-17 and RORγt positive cells were detected within the adoptively transferred Thy1.1+ Treg population. Mechanistic analysis revealed that IL-1β induced activation of p38 and JNK in Treg and addition of pharmacologic inhibitors specific for these MAPKs abrogated IL-17 production. Our studies reveal that although Treg have primarily immunosuppressive functions they may also facilitate pro-inflammatory responses as they can be converted into IL-17 producing cells by IL-1β. These observations may have significant implications on clinical strategies that employ Treg for control of GvHD and suggest that further intervention might be required to prevent attainment of pro-inflammatory properties by Treg while maintaining their suppressive function. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 20 (9) ◽  
pp. 1961-1968
Author(s):  
Wei Wei ◽  
Liefeng Ji ◽  
Wanli Duan ◽  
Jiang Zhu

Purpose: To investigate the effect of Klotho and FOXO1/3 on the CH viability in OA.Methods: The survival rate of CHs, Klotho and FOXO1/3 protein expression, and ROS production were measured in the OA cartilages of different degenerative phases. H2O2 was also used to injure CHs, and the cell viability, Klotho and FOXO1/3 expressions, as well as ROS levels were investigated to clarify the effect of exogenic Klotho on the injured CHs. Additionally, in order to verify the role of FOXO1/3 in Klotho-treated CHs, SOD2, GPX1, inflammatory factors, collagen I/II, SOX9, and Runx-2 levels were analyzed by silencing FOXO1 and FOXO3 expression via siRNA transfection.Results: Klotho and FOXO1/3 expressions significantly decreased, and ROS production increased in severely human OA cartilage (p <0.05). Besides, H2O2 affected CHs viability with the suppression of Klotho and FOXO1/3 expression but ROS production was elevated. Exogenic Klotho application partly reversed the injury caused by H2O2. Furthermore, Klotho treatment of the injured CHs contributed to SOD2 and GPX1 expressions, and suppressed IL-1β, IL-6, TNF-α and MMP-13 production, resulting in  the upregulation of collagen II and SOX9 as well as downregulation of collagen I and Runx-2. However, the protective effect of Klotho was weakened by FOXO1 and FOXO3 gene silencing.Conclusion: Klotho protects CHs viability by suppressing oxidative stress and inflammation, which is associated with the mediation of FOXO1 and FOXO3. These findings provide new insights into the treatment of OA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingpan Lin ◽  
Lu Gao ◽  
Yanke Lin ◽  
Shuai Wang ◽  
Zemin Yang ◽  
...  

Rheumatoid arthritis is a systemic autoimmune disease characterized by synovial inflammation and bone destruction. Identifying drugs with time-varying efficacy and toxicity, and elucidating the mechanisms would help to improve treatment efficacy and reduce adverse effects. Here, we aimed to determine the chronoefficacy of semen strychni (SS) and tripterygium glycoside tablet (TGT) against rheumatoid arthritis in mice, and to investigate a potential role of circadian pharmacokinetics in generating chronoefficacy. SS extract and TGT suspension were prepared with ultrasonication. Effects of SS and TGT on collagen-induced arthritis (CIA) were evaluated by measuring TNF-α and IL-6 levels. SS dosed at ZT18 was more effective in protecting against CIA than drug dosed at ZT6 (i.e., lower levels of key inflammatory factors at ZT18 than at ZT6). This was accompanied by higher systemic exposure levels of strychnine and brucine (two main putative active ingredients of SS) in ZT18-treated than in ZT6-treated CIA mice. TGT dosing at ZT2 showed a better efficacy against CIA as compared to herb doing at ZT14. Consistently, ZT2 dosing generated a higher exposure of triptolide (a main putative active ingredient of TGT) as compared to ZT14 dosing in CIA mice. Moreover, strychnine, brucine, and triptolide significantly inhibited the proliferation of fibroblast-like synoviocytes, and reduced the production of TNF-α and IL-6 and the mRNAs of TNF-α, IL-6, COX-2, and iNOS, suggesting that they possessed an anti-arthritis activity. In conclusion, SS and TGT display chronoefficacy against rheumatoid arthritis in mice, that is attributed to circadian pharmacokinetics of main active ingredients. Our findings have implications for improving treatment outcomes of SS and TGT via timed delivery.


2020 ◽  
Author(s):  
Meijia Wang ◽  
Zhenli Huang ◽  
Kun Tang ◽  
Pengfei Gao ◽  
Yanjiao Lu ◽  
...  

Abstract Background:COVID-19 causes epidemics and pandemics worldwide, but the role of pathophysiological parameters particularly systemic inflammation in COVID-19 has not been understood. We aimed to investigate clinical outcomes in view of systemic inflammation in COVID-19.Methods:In this retrospective study, the demographic and clinical data of 225 confirmed COVID-19 cases on admission at Tongji Hospital from January 28 to February 15, 2020, were extracted and analyzed. These patients were categorized by inflammation state on the basis of the expression of inflammatory factors or classified as severe and non-severe according to 2019 American Thoracic Society / Infectious Disease Society of America guidelines.Results: Among 225 patients with confirmed COVID-19, 155 patients (68.9%) categorized into hyperinflammation group and 70 (31.1%) were non- hyperinflammation group. Compared to non-hyperinflammation group, hyperinflammation group more frequently had chest tightness/dyspnea and lymphopenia, aberrant multiple indexes of organ function including the heart, liver, kidney, and coagulation, with higher level of C-reactive protein (hsCRP) as well as interleukin (IL)-6, IL-8, tumour necrosis factor α (TNF-α), etc. Hyperinflammation group were more likely to admit to intensive care unit (ICU) (52.3% vs 5.7%), receive ventilation (84.5% vs 10.0%) and be with higher mortality (44.5% vs 5.7%) than non-hyperinflammation group. The mortality of severe patients with hyperinflammation (60/99, 60.6%) was significantly higher than without hyperinflammation (2/20, 10.0%). Non-severe patients with hyperinflammation even tended to have higher mortality (9/56, 16.1%) than those in severe cases without hyperinflammation (2/20, 10%).Conclusion: Excessive systemic inflammation was correlated highly with poor clinical outcomes in COVID-19, particularly in severe cases. Non-severe patients with hyperinflammation even tended to have higher mortality than those in severe cases without hyperinflammation.Trial registration: This is a retrospective observational study without a trial registration number.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaowei Fei ◽  
Yeting He ◽  
Jia Chen ◽  
Weitao Man ◽  
Chen Chen ◽  
...  

Abstract Background Inflammation and apoptosis caused by intracerebral hemorrhage (ICH) are two important factors that affect patient prognosis and survival. Toll-like receptor 4 (TLR4) triggers activation of the inflammatory pathway, causing synthesis and release of inflammatory factors. The inflammatory environment also causes neuronal apoptosis. However, no studies have reported the role of TLR4 in inflammation and apoptosis. Methods We performed survival curve analysis and behavioral scores on TLR4 knockout mice and wild-type mice after inducing ICH. We used TLR4 knockout mice and wild-type mice to make ICH models with type VII collagenase and explored the link between TLR4 in inflammation and apoptosis. We used Western blot to detect the expression of apoptosis-related proteins, inflammatory factors, and their receptors at different time points after ICH induction. The effects of TLR4 on apoptosis were observed by TUNEL, Hoechst, and HE staining techniques. The association with TLR4 in inflammation and apoptosis was explored using IL-1β and TNF-α antagonists. Data conforming to a normal distribution are expressed as mean ± standard deviation. Grade and quantitative data were compared with rank sum test and t test between two groups. P < 0.05 was considered statistically significant. Results TLR4 knockout significantly increased the survival rate of ICH mice. The scores of TLR4 knockout mice were significantly lower than those of wild-type mice. We found that TLR4 knockout mice significantly inhibited apoptosis and the expression of inflammatory factors after the induction of ICH. The apoptosis of ICH-induced mice was significantly improved after injecting IL-1β and TNF-α antagonists. Moreover, the anti-apoptotic effect of the antagonist in wild-type mice is more pronounced. A single injection of the antagonist failed to improve apoptosis in TLR4 knockout mice. Conclusions We conclude that TLR4-induced inflammation after ICH promotes neuronal apoptosis. IL-1β and TNF-α antagonists attenuate this apoptotic effect. Therefore, targeting TLR4 in patients with clinical ICH may attenuate inflammatory response, thereby attenuating apoptosis and improving prognosis.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1378-1385
Author(s):  
Chen-Min Sun ◽  
Wen-Yi Zhang ◽  
Shu-Yan Wang ◽  
Gang Qian ◽  
Dong-Liang Pei ◽  
...  

Abstract Aim Renal fibrosis (RF) is a common clinical condition leading to irreversible renal function loss. Tyrosine kinase proteins and microRNAs (miRs) are associated with pathogenesis and we aim to investigate the role of Fer and its partner miR(s) in RF. Method In silico reproduction of Mouse Kidney FibrOmics browser was performed to identify potential miR(s) and target gene(s). In vivo validation was performed in C57BL/6 mice with unilateral ureteral obstruction (UUO). In vitro validation was performed in rat kidney fibroblast NRK-49F cells. Mimics and inhibitors of miR-29c-3p were constructed. The target gene Fer was monitored by RT-PCR and western blotting. The levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in serum and media were measured by ELISA. Results The Fer expression and protein level were gradually increased during 14 days of UUO modeling. miR-29c-3p expression was strongly correlated with that of Fer. In vivo validation showed increased expressions of fibrosis-associated genes and increased phospoho-Smad3 level in the UUO model. Fer-knockdown (KD) significantly decreased expressions of fibrosis-associated genes. Pharmaceutical inhibition of Fer showed similar effects to miR-29c-3p, and miR inhibition showed a significant decrease of excretion of inflammatory factors. Conclusion Dysregulation of miR-29c-3p and Fer plays a role in RF. Pharmaceutical or genetic inhibition of Fer may serve as the potential treatment for RF.


2020 ◽  
Vol 3 (6) ◽  
pp. e202000688 ◽  
Author(s):  
Jérémie D Goldstein ◽  
Esen Y Bassoy ◽  
Assunta Caruso ◽  
Jennifer Palomo ◽  
Emiliana Rodriguez ◽  
...  

IL-36R signaling plays an important role in the pathogenesis of psoriasis. We ought to assess the specific function of IL-36R in keratinocytes for the pathology of Aldara-induced psoriasis-like dermatitis. Il36rΔK mice presenting deletion of IL-36R in keratinocytes were similarly resistant to Aldara-induced ear inflammation as Il36r−/− mice, but acanthosis was only prevented in Il36r−/− mice. FACS analysis revealed that IL-36R signaling in keratinocytes is mandatory for early neutrophil infiltration in Aldara-treated ears. RNASeq and qRT-PCR experiments demonstrated the crucial role of IL-36R signaling in keratinocytes for induction of IL-23, IL-17, and IL-22 at early time points. Taken together, our results demonstrate that IL-36R signaling in keratinocytes plays a major role in the induction of Aldara-induced psoriasis-like dermatitis by triggering early production of IL-23/IL-17/IL-22 cytokines and neutrophil infiltration.


Sign in / Sign up

Export Citation Format

Share Document