scholarly journals Two novel protein chips for the detection of antibodies against porcine parvovirus

2019 ◽  
Author(s):  
Yue Wu ◽  
Xudan Wu ◽  
Jinxiu Hou ◽  
Xiongnan Chen ◽  
Xiaobo Huang ◽  
...  

Abstract Background: PPV is one of the most important pathogens causing porcine reproductive disorder. It has been shown in clinical cases to be a commonly mixed infection with other important swine diseases which can aggravate the severity of the disease and bring serious economic losses to the pig industry. Serological methods, such as hemagglutination inhibition assays (HAI), serum neutralization (SN), and the modified direct complement-fixation (MDCF) test were utilized earlier, whereas the enzyme-linked immunosorbent assay (ELISA) is the most frequently applied assay to detect PPV-specific antibodies Results: We establish the visible protein chip and the cyanine dye 3 (Cy3)-labeled protein chip to detect the clinical serum from pigs. In this study, the recombinant protein VP2 of PPV was expressed in E.coli, purified with nickel magnetic beads, and then printed onto epoxy-coated glass slides for preparation of the protein chip. After a series of experiments, the conditions of antigen protein concentration, incubation time of primary antibody or secondary antibody, and optimal serum dilution fold were optimized, resulting in a successful visible protein chip and Cy3-labeled protein chip. The results showed that the positive serum, diluted up to 6000-fold, can be detected by the visible protein chip, and the positive serum, diluted up to 12,800-fold, can be detected by the Cy3-labeled protein chip, suggesting the high sensitivity of these protein chips. Moreover, the positive detection ratio, sensitivity, and specificity of these two kinds of protein chips were higher than those of commercial ELISA antibody detection kits.Conclusion: Overall, these two protein chips can be used to rapidly diagnose clinical samples with high throughput. Key words: Protein chip; Porcine parvovirus (PPV); Antibody detection; Clinical serum

2020 ◽  
Author(s):  
Yue Wu ◽  
Xudan Wu ◽  
Jinxiu Hou ◽  
Xiongnan Chen ◽  
Xiaobo Huang ◽  
...  

Abstract Background : PPV is one of the most important pathogens causing porcine reproductive disorder. It has been shown in clinical cases to be a commonly mixed infection with other important swine diseases which can aggravate the severity of the disease and bring serious economic losses to the pig industry. Serological methods, such as hemagglutination inhibition assays (HAI), serum neutralization (SN), and the modified direct complement-fixation (MDCF) test were utilized earlier, whereas the enzyme-linked immunosorbent assay (ELISA) is the most frequently applied assay to detect PPV-specific antibodies Results: We establish the visible protein chip and the cyanine dye 3 (Cy3)-labeled protein chip to detect the clinical serum from pigs. In this study, the recombinant protein VP2 of PPV was expressed in E.coli , purified with nickel magnetic beads, and then printed onto epoxy-coated glass slides for preparation of the protein chip. After a series of experiments, the conditions of antigen protein concentration, incubation time of primary antibody or secondary antibody, and optimal serum dilution fold were optimized, resulting in a successful visible protein chip and Cy3-labeled protein chip. The results showed that the positive serum, diluted up to 6000-fold, can be detected by the visible protein chip, and the positive serum, diluted up to 12,800-fold, can be detected by the Cy3-labeled protein chip, suggesting the high sensitivity of these protein chips. Moreover, the positive detection ratio, sensitivity, and specificity of these two kinds of protein chips were higher than those of commercial ELISA antibody detection kits. Conclusion: Overall, these two protein chips can be used to rapidly diagnose clinical samples with high throughput. Key words: Protein chip; Porcine parvovirus (PPV); Antibody detection; Clinical serum


2019 ◽  
Vol 65 (5) ◽  
pp. 343-352
Author(s):  
Ying Shan ◽  
Yajie Liu ◽  
Ziqi Liu ◽  
Guowei Li ◽  
Cong Chen ◽  
...  

Porcine epidemic diarrhea virus (PEDV) causes severe infectious diseases in all ages of swine and leads to serious economic losses. Serologic tests are widely accepted and used to detect anti-PEDV antibodies that could indicate PEDV infection or vaccination. In this study, PEDV recombinant S1 protein (rS1) was expressed with the Bac-to-Bac system and purified by nickel-affinity chromatography. An indirect enzyme-linked immunosorbent assay based on rS1 (rS1-ELISA) was then developed and optimized by checkerboard assays with serial dilutions of antigen and serum. Serum samples from 453 domestic pigs and 42 vaccinated pigs were analyzed by the indirect fluorescent antibody (IFA) test and rS1-ELISA. Taking IFA as a gold standard, rS1-ELISA produced a high sensitivity (90.7%) and specificity (94.6%) by a receiver operating characteristic (ROC) curve. In addition, ROC analysis also revealed that rS1-ELISA was consistent with IFA (area under the curve 0.9583 ± 0.0082). This rS1-ELISA was then applied to antibody detection in inactivated PEDV vaccinated pigs. The antibody could be detected 2–4 weeks after the first inoculation. These results indicated that the rS1-ELISA established in this study provides a promising and reliable tool for serologic detection of anti-PEDV IgG antibodies in infected or vaccinated pigs.


2020 ◽  
Vol 69 (9) ◽  
pp. 1183-1196
Author(s):  
Qingqing Chen ◽  
Jun Rong ◽  
Guopan Li ◽  
Baojuan Xu ◽  
Xi Wang ◽  
...  

Introduction. PCV2 is a DNA virus that exists widely in pigs and has caused great economic losses to the pig industry worldwide. In the existing commercial PCV2 enzyme-linked immunosorbent assay (ELISA) kits both natural infection with PCV2 and vaccine immunization produce results that are positive for PCV2 Cap antibodies and therefore they cannot diagnose PCV2 infection in immunized pig farms. Aim. To establish a PCV2 non-structural protein antibody detection method that distinguishes between antibodies resulting from natural prior exposure (infection) and those induced by subunit vaccine immunization. Methodology. Based on the non-structural Rep′ protein, we established an indirect ELISA (iELISA) using sera from guinea pigs and piglets. Results. The results for iELISA for guinea pig serum showed that animals vaccinated with a whole-virus inactivated PCV2 vaccine had 100 % (10/10) Cap antibody positivity and 100 % (10/10) Rep′ antibody positivity. Guinea pigs vaccinated with a recombinant subunit PCV2 vaccine had 100 % (10/10) Cap antibody positivity, while no (0/10) guinea pigs were Rep′ antibody-positive. The combined detection results for the Rep′ iELISA and a PCV2 Antibody Test kit (Commercial) showed that pigs vaccinated with a whole-virus inactivated PCV2 vaccine or PCV2 SD/2017 had 100 % (5/5) Cap antibody positivity and 100 % (5/5) Rep′ antibody positivity. Pigs vaccinated with a recombinant subunit PCV2 vaccine had 100 % (5/5) Cap antibody positivity, while no (0/10) pigs were Rep′ antibody-positive. Conclusion. This paper describes an effective iELISA method that can distinguish natural infection with PCV2 (Cap and Rep positive) or inoculation with a whole-virus inactivated vaccine (Cap and Rep positive) from subunit vaccine immunization (Cap-positive, Rep-negative). These comparative assays could be very useful in the control of PCV2 in pig herds.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Patricia Pleguezuelos ◽  
Marina Sibila ◽  
Raúl Cuadrado ◽  
Rosa López-Jiménez ◽  
Diego Pérez ◽  
...  

Abstract Background The objective of the present study was to explore the benefits of Porcine circovirus 2 (PCV-2) blanket vaccination in a sow herd on productive parameters, PCV-2 infection and immune status in sows and their progeny. For this purpose, 288 sows were distributed among four balanced experimental groups. One group remained as negative control group and the other three received 1 mL of PCV-2 Ingelvac Circoflex® intramuscularly at different productive cycle moments: before mating, mid gestation (42–49 days post-insemination) or late gestation (86–93 days post-insemination); phosphate buffered saline (PBS) was used as negative control item. Reproductive parameters from sows during gestation and body weight of their progeny from birth to weaning were recorded. Additionally, blood was collected from sows at each vaccination time and piglets at 3 weeks of age. Moreover, up to 4 placental umbilical cords (PUC) per sow were taken at peri-partum. Sera from sows and piglets were analysed for PCV-2 antibody detection using an enzyme-linked immunosorbent assay (ELISA). Sera from sows and PUC were tested to quantify viraemia using a real time quantitative polymerase chain reaction (qPCR) assay. Results Globally, results indicated that vaccinated sows showed heavier piglets at birth and at weaning, less cross-fostered piglets, lower viral load at farrowing as well as in PUC, and higher antibody levels at farrowing, compared to non-vaccinated ones. When all groups were compared among them, sows vaccinated at mid or late gestation had heavier piglets at birth than non-vaccinated sows, and lower proportion of PCV-2 positive PUC. Also, cross-fostering was less frequently practiced in sows vaccinated at pre-mating or mid gestation compared to non-vaccinated ones. Conclusions In conclusion, the present study points out that PCV-2 sow vaccination at different time points of their physiological status (mimicking blanket vaccination) offers benefits at production and serological and virological levels.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jacqueline King ◽  
Anne Pohlmann ◽  
Kamila Dziadek ◽  
Martin Beer ◽  
Kerstin Wernike

Abstract Background As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5’ untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. Results To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19–32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. Conclusions Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.


2021 ◽  
Vol 74 (1) ◽  
Author(s):  
Molhima M. Elmahi ◽  
Mohammed O. Hussien ◽  
Abdel Rahim E. Karrar ◽  
Amira M. Elhassan ◽  
Abdel Rahim M. El Hussein

Abstract Background Bluetongue (BT) is a vector-borne viral disease of ruminant and camelid species which is transmitted by Culicoides spp. The causative agent of BT is bluetongue virus (BTV) that belongs to genus Orbivirus of the family Reoviridae. The clinical disease is seen mainly in sheep but mostly sub-clinical infections of BT are seen in cattle, goats and camelids. The clinical reaction of camels to infection is usually not apparent. The disease is notifiable to the World Organization for Animal Health (OIE), causing great economic losses due to decreased trade and high mortality and morbidity rates associated with bluetongue outbreaks. The objective of this study was to investigate the seroprevalence of BTV in camels in Kassala State, Eastern Sudan and to identify the potential risk factors associated with the infection. A cross sectional study using a structured questionnaire survey was conducted during 2015–2016. A total of 210 serum samples were collected randomly from camels from 8 localities of Kassala State. The serum samples were screened for the presence of BTV specific immunoglobulin (IgG) antibodies using a competitive enzyme-linked immunosorbent assay (cELISA). Results Seropositivity to BTV IgG was detected in 165 of 210 camels’ sera accounting for a prevalence of 78.6%. Potential risk factors to BTV infection were associated with sex (OR = 0.061, p-value = 0.001) and seasonal river as water source for drinking (OR = 32.257, p-value = 0.0108). Conclusions Sex and seasonal river as water source for drinking were considered as potential risk factors for seropositivity to BTV in camels. The high prevalence of BTV in camels in Kassala State, Eastern Sudan, necessitates further epidemiological studies of BTV infection in camels and other ruminant species to better be able to control BT disease in this region.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuan Li ◽  
Hongliu Ye ◽  
Meng Liu ◽  
Suquan Song ◽  
Jin Chen ◽  
...  

Abstract Background H7 subtype avian influenza has caused great concern in the global poultry industry and public health. The conventional serological subtype-specific diagnostics is implemented by hemagglutination inhibition (HI) assay despite lengthy operation time. In this study, an efficient, rapid and high-throughput competitive enzyme-linked immunosorbent assay (cELISA) was developed for detection of antibodies against H7 avian influenza virus (AIV) based on a novel monoclonal antibody specific to the hemagglutinin (HA) protein of H7 AIV. Results The reaction parameters including antigen coating concentration, monoclonal antibody concentration and serum dilution ratio were optimized for H7 antibody detection. The specificity of the cELISA was tested using antisera against H1 ~ H9, H11 ~ H14 AIVs and other avian viruses. The selected cut-off values of inhibition rates for chicken, duck and peacock sera were 30.11, 26.85 and 45.66% by receiver-operating characteristic (ROC) curve analysis, respectively. With HI test as the reference method, the minimum detection limits for chicken, duck and peacock positive serum reached 20, 21 and 2− 1 HI titer, respectively. Compared to HI test, the diagnostic accuracy reached 100, 98.6, and 99.3% for chicken, duck and peacock by testing a total of 400 clinical serum samples, respectively. Conclusions In summary, the cELISA assay developed in this study provided a reliable, specific, sensitive and species-independent serological technique for rapid detection of H7 antibody, which was applicable for large-scale serological surveillance and vaccination efficacy evaluation programs.


2021 ◽  
pp. 104063872110061
Author(s):  
César I. Romo-Sáenz ◽  
Patricia Tamez-Guerra ◽  
Aymee Olivas-Holguin ◽  
Yareellys Ramos-Zayas ◽  
Nelson Obregón-Macías ◽  
...  

Equine infectious anemia (EIA) is a highly infectious disease in members of the Equidae family, caused by equine infectious anemia virus (EIAV). The disease severity ranges from subclinical to acute or chronic, and causes significant economic losses in the equine industry worldwide. Serologic tests for detection of EIAV infection have some concerns given the prolonged seroconversion time. Therefore, molecular methods are needed to improve surveillance programs for this disease. We attempted detection of EIAV in 6 clinical and 42 non-clinical horses in Nuevo Leon State, Mexico, using the agar gel immunodiffusion (AGID) test for antibody detection, and nested and hemi-nested PCR for detection of proviral DNA. We found that 6 of 6, 5 of 6, and 6 of 6 clinical horses were positive by AGID, nested PCR, and hemi-nested PCR, respectively, whereas 0 of 42, 1 of 42, and 9 of 42 non-clinical horses were positive by these tests, respectively. BLAST analysis of the 203-bp 5′-LTR/ tat segment of PCR product revealed 83–93% identity with EIAV isolates in GenBank and reference strains from other countries. By phylogenetic analysis, our Mexican samples were grouped in a different clade than other sequences reported worldwide, indicating that the LRT/ tat region represents an important target for the detection of non-clinical horses.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Atiporn Boonyai ◽  
Anchalee Thongput ◽  
Thidarat Sisaeng ◽  
Parisut Phumchan ◽  
Navin Horthongkham ◽  
...  

Abstract Background Prevalence and incidence of hepatitis caused by HEV infection are usually higher in developing countries. This study demonstrated the HEV seroprevalence and incidence of HEV infection in patients with clinical hepatitis in a tertiary hospital in Thailand. Methods A laboratory-based cross-sectional study was conducted using 1106 serum samples from patients suspected of HEV infection sent to the Serology laboratory, Siriraj Hospital, for detecting HEV antibodies during 2015–2018. Prevalence of anti-HEV IgG and IgM antibodies in general patients, including organ transplant recipients and pregnant women in a hospital setting, were determined using indirect enzyme-linked immunosorbent assay (ELISA) kits. Comparison of laboratory data between groups with different HEV serological statuses was performed. Results HEV IgG antibodies were detected in 40.82% of 904 serum samples, while HEV IgM antibodies were detected in 11.75% of 1081 serum samples. Similar IgG and IgM antibody detection rates were found in pregnant women. Interestingly, anti-HEV IgM antibodies were detected in 38.5% of patients who underwent organ transplantation. Patients who tested positive for anti-HEV IgM antibodies had higher alanine aminotransferase levels than those who had not. In contrast, patients who tested positive for anti-HEV IgG had more elevated levels of total bilirubin than those who tested negative. Conclusions HEV seroprevalence and incidence in patients with clinical hepatitis were relatively high in the Thai population, including the pregnancy and organ transplant subgroups. The results potentially benefit the clinicians in decision-making to investigate HEV antibodies and facilitating proper management for patients.


2003 ◽  
Vol 10 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Angel Balmaseda ◽  
María G. Guzmán ◽  
Samantha Hammond ◽  
Guillermo Robleto ◽  
Carolina Flores ◽  
...  

ABSTRACT To evaluate alternative approaches to the serological diagnosis of dengue virus (DEN) infection, the detection of DEN-specific immunoglobulin M (IgM) and IgA antibodies in serum and saliva specimens was assessed in 147 patients with symptoms of DEN infection seen at the Ministry of Health in Nicaragua. Seventy-two serum samples were determined to be positive for anti-DEN antibodies by IgM capture enzyme-linked immunosorbent assay, the routine diagnostic procedure. Serum and saliva specimens were obtained from 50 healthy adults as additional controls. IgM was detected in the saliva of 65 of the 72 serum IgM-positive cases, 6 of the 75 serum IgM-negative cases, and none of the control group, resulting in a sensitivity of 90.3% and a specificity of 92.0% and demonstrating that salivary IgM is a useful diagnostic marker for DEN infection. Detection of IgA in serum may be another feasible alternative for the diagnosis of DEN infection, with serum IgA found in 68 (94.4%) of the IgM-positive cases. In contrast, detection of IgA in saliva was not found to be a useful tool for DEN diagnosis in the present study. Further studies of the kinetics of antibody detection in another set of 151 paired acute- and convalescent-phase serum samples showed that DEN-specific IgA antibodies were detected in more acute-phase samples than were IgM antibodies. Thus, we conclude that DEN-specific IgA in serum is a potential diagnostic target. Furthermore, given that saliva is a readily obtainable, noninvasive specimen, detection of DEN-specific salivary IgM should be considered a useful, cheaper diagnostic modality with similar sensitivity and specificity to IgM detection in serum.


Sign in / Sign up

Export Citation Format

Share Document