scholarly journals Melatonin regulates the neurotransmitter secretion disorder induced by caffeine through the gut-brain axis in zebrafish (Danio rerio)

2019 ◽  
Author(s):  
Qiannan Peng ◽  
Zeng Zhang ◽  
Dongxue Huo ◽  
Shuaiming Jiang ◽  
Chenchen Ma ◽  
...  

Abstract Background : Melatonin has been widely used as a "probiotic agent" capable of producing strong neurotransmitter secretion regulatory effects. In the present study, a zebrafish neural hyperactivity model was established using caffeine induction, and the regulation and mechanism of melatonin and probiotic on zebrafish neurotransmitter secretion disorder were explored. Results : Disorders of brain neurotransmitter secretion caused by caffeine, including that of dopamine (DA), γ-aminobutyric acid (γ-GABA), and 5-hydroxytryptamine (5-HT), were improved after interference treatment with melatonin or the probiotic. Metagenomic sequencing demonstrated that the melatonin-treated zebrafish gradually restored their normal intestinal microbial structure, while probiotic supplementation may restructure a new microbiome. Additionally, supplementation with melatonin significantly regulated intestinal microbial functional features. Based on this activity, we supposed that gut microbes play an essential role in the regulation of neurotransmitter secretion disorder via a process that involves melatonin. Germ-free (GF) zebrafish were used to verify the hypotheses. Validation experiment results revealed that the effect on the zebrafish in the GF group could not achieve that on the zebrafish in the melatonin group after adding the same dose of melatonin, and subsequent real-time PCR and metabolic pathway analysis confirmed the conclusion. Meanwhile, the content of acetic acid and propionic acid in the zebrafish gut decreased after caffeine induction and increased significantly after melatonin treatment. Conclusions : In the present research, we identified the potential mechanism of melatonin regulation of neurotransmitter secretion disorder through the gut-brain axis, laying a foundation for exploring the prevention and treatment of some neuropsychiatric disorders by improving the intestinal microbiota.

2020 ◽  
Author(s):  
Qiannan Peng ◽  
Zeng Zhang ◽  
Dongxue Huo ◽  
Shuaiming Jiang ◽  
Chenchen Ma ◽  
...  

Abstract Background: Melatonin has been widely used as a "probiotic agent" capable of producing strong neurotransmitter secretion regulatory effects. The probiotics related researches also provide the evidence of microbial interactions with the gut-brain axis for mental health. In the present study, a zebrafish neural hyperactivity model was established using caffeine induction, and the regulation and mechanism of melatonin and probiotic on zebrafish neurotransmitter secretion disorder were explored. To further address the challenge that if the gut microbes play an essential role in the regulation of neurotransmitter secretion disorder via a process that involves melatonin, the Germ-free (GF) zebrafish model was used to verify the hypothesis. Results: Disorders of brain neurotransmitter secretion caused by caffeine, including that of dopamine (DA), γ-aminobutyric acid (γ-GABA), and 5-hydroxytryptamine (5-HT), were improved after interference treatment with melatonin or the probiotic. Metagenomic sequencing demonstrated that the melatonin-treated zebrafish gradually restored their normal intestinal microbial structure, while probiotic supplementation may restructure a new microbiome. Additionally, supplementation with melatonin significantly regulated intestinal microbial functional features, which indicated the gut microbiota plays the key role in the function of melatonin. Based on this activity, a Germ-free zebrafish model was applied to verified our hypothesis in the following validation experiment. Validation experiment results revealed that the effect on the zebrafish in the GF group could not achieve that on the zebrafish in the melatonin group after adding the same dose of melatonin, and subsequent real-time PCR and metabolic pathway analysis confirmed the conclusion. Meanwhile, the content of acetic acid and propionic acid in the gut of not-germ-free zebrafish decreased after caffeine induction and increased significantly after melatonin treatment. However, no acetic or propionic acids were found, detected, changed as there are germ-free zebrafish. Conclusions: In the present research, we identified the potential mechanism of melatonin regulation of neurotransmitter secretion disorder through the gut-brain axis, laying a foundation for exploring the prevention and treatment of some neuropsychiatric disorders by improving the intestinal microbiota.


Author(s):  
Zeng Zhang ◽  
Qiannan Peng ◽  
Dongxue Huo ◽  
Shuaiming Jiang ◽  
Chenchen Ma ◽  
...  

Melatonin has been widely used as a “probiotic agent” capable of producing strong neurotransmitter secretion regulatory effects, and the microbiota-gut-brain axis-related studies have also highlighted the role of the gut microbiota in neuromodulation. In the present study, a zebrafish neural hyperactivity model was established using caffeine induction to explore the regulatory effects of melatonin and probiotic on neurotransmitter secretion disorder in zebrafish. Disorders of brain neurotransmitter secretion (dopamine, γ-aminobutyric acid, and 5-hydroxytryptamine) caused by caffeine were improved after interference treatment with melatonin or probiotic. Shotgun metagenomic sequencing demonstrated that the melatonin-treated zebrafish gradually restored their normal intestinal microbiota and metabolic pathways. Germ-free (GF) zebrafish were used to verify the essential role of intestinal microbes in the regulation of neurotransmitter secretion. The results of the neurotransmitter and short-chain fatty acid determination revealed that the effect on the zebrafish in the GF group could not achieve that on the zebrafish in the melatonin group after adding the same dose of melatonin. The present research revealed the potential mode of action of melatonin through the microbiota-gut-brain axis to regulate the disruption of neurotransmitter secretion, supporting the future development of psychotropic drugs targeting the intestinal microbiota.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1790 ◽  
Author(s):  
Ulla Uusitalo ◽  
Carin Andren Aronsson ◽  
Xiang Liu ◽  
Kalle Kurppa ◽  
Jimin Yang ◽  
...  

Probiotics are linked to positive regulatory effects on the immune system. The aim of the study was to examine the association between the exposure of probiotics via dietary supplements or via infant formula by the age of 1 year and the development of celiac disease autoimmunity (CDA) and celiac disease among a cohort of 6520 genetically susceptible children. Use of probiotics during the first year of life was reported by 1460 children. Time-to-event analysis was used to examine the associations. Overall exposure of probiotics during the first year of life was not associated with either CDA (n = 1212) (HR 1.15; 95%CI 0.99, 1.35; p = 0.07) or celiac disease (n = 455) (HR 1.11; 95%CI 0.86, 1.43; p = 0.43) when adjusting for known risk factors. Intake of probiotic dietary supplements, however, was associated with a slightly increased risk of CDA (HR 1.18; 95%CI 1.00, 1.40; p = 0.043) compared to children who did not get probiotics. It was concluded that the overall exposure of probiotics during the first year of life was not associated with CDA or celiac disease in children at genetic risk.


Author(s):  
Stephan O. Adler ◽  
Edda Klipp

Temperature influences the life of many organisms in various ways. A great number of them live under conditions, where their ability to adapt to changes in temperature can be vital and largely determine their fitness. Understanding the mechanisms and principles underlying this ability to adapt can be of great advantage, for example, to improve growth conditions for crops and increase their yield. In times of imminent, increasing climate change, this becomes even more important, in order to find strategies and help crops cope with these fundamental changes. There is intense research in the field of acclimation, that comprises fluctuations of various environmental conditions, but most acclimation research focuses on regulatory effects and the observation of gene expression changes within the examined organism. As thermodynamic effects are a direct consequence of temperature changes, these should necessarily be considered in this field of research, but are often neglected. Also, compensated effects might be missed, even though they are equally important for the organism, since they do not cause observable changes, but rather counteract them. In this work, using a systems biology approach, we demonstrate that even simple network motifs can exhibit temperature dependent functional features, resulting from the interplay of network structure and the distribution of activation energies over the involved reactions. The demonstrated functional features are (i) the reversal of fluxes within a linear pathway, (ii) a thermo-selective branched pathway with different flux modes and (iii) the increased flux towards carbohydrates in a minimal calvin cycle that was designed to demonstrate temperature compensation within reaction networks. By this, we expand the scope of thermodynamic modelling of biochemical processes by addressing further possibilities and effects, following established mathematical descriptions of biophysical properties.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1431
Author(s):  
Zeng Zhang ◽  
Yuanyuan Wang ◽  
Yanjun Zhang ◽  
Kaining Chen ◽  
Haibo Chang ◽  
...  

Approximately 17 million people suffer from cardiovascular diseases caused by hyperlipidemia, making it a serious global health concern. Among others, resistant starch (RS) has been widely used as a prebiotic in managing hyperlipidemia conditions. However, some studies have reported limited effects of RS on body weight and blood lipid profile of the host, suggesting further investigation on the synergistic effects of RS in combination with probiotics as gut microbes plays a role in lipid metabolism. This study evaluated the effects of jackfruit seed sourced resistant starch (JSRS) as a novel RS on mice gut microbes and hyperlipidemia by performing 16s rRNA and shotgun metagenomic sequencing. The results showed that 10% JSRS had a limited preventive effect on bodyweight and serum lipid levels. However, the JSRS promoted the growth of Bifidobacterium pseudolongum, which indicated the ability of B. pseudolongum for JSRS utilization. In the validation experiment, B. pseudolongum interacted with JSRS to significantly reduce bodyweight and serum lipid levels and had a therapeutic effect on hepatic steatosis in mice. Collectively, this study revealed the improvements of hyperlipidemia in mice by the synergistic effects of JSRS and B. pseudolongum, which will help in the development of “synbiotics” for the treatment of hyperlipidemia in the future.


2020 ◽  
Author(s):  
Pudong Li ◽  
Jianping Xu ◽  
Zhengyi Wang ◽  
Hongye Li

Abstract Background: Like microbiomes in the rhizosphere, phyllosphere microbiomes can have an important role in plant growth and health. However, whether and how the phyllosphere microbiomes respond to the invasion of pathogens is not well understood. In this study, we address this question using the citrus phyllosphere-associated microbiome as a model.Results: Through DNA metabarcoding (16S for bacteria and ITS for fungi) and shotgun metagenomic sequencing, we found that phyllosphere microbiomes in different ecological habitats (epiphytes and endophytes) responded differently to melanose disease caused by the fungal pathogen Diaporthe citri on citrus (Citrus unshiu) leaves. We observed that citrus phyllosphere-associated microbiome responded to the melanose disease in five ways: (1) increasing microbial richness; (2) reducing community evenness; (3) enriching selected microbes; (4) enhancing microbial interactions; and (5) enriching functional features involved in metabolism and fungal cell wall degrading.Conclusions: Our study revealed how phyllosphere microbiomes in the epiphytic and endophytic habitats differ between diseased and healthy leaves. Based on the differences at both the taxonomic and functional levels, we propose a general conceptual paradigm to describe the different microbial community assembly processes for the phyllosphere microbiome in response to leaf disease and how such processes impact plant health. Our results provide novel insights for understanding the contributions of the phyllosphere microbial community response during pathogen invasion.


2020 ◽  
Author(s):  
Mengzhi Li ◽  
Zhongjian Chen ◽  
Jun Qian ◽  
Fugang Wei ◽  
Guozhuang Zhang ◽  
...  

Abstract Background: Panax notoginseng is a highly valuable medicinal plant. Reduced P. notoginseng yield is a common and serious problem that arises in a continuous cropping system. Variation in the composition and function of soil microbial community is considered the primary cause of yield reduction.Methods: This study used shotgun metagenomic sequencing approaches to describe the taxonomic and functional features of P. notoginseng rhizosphere microbiome and screen microbial taxa and functional traits related to yields. Results: At the family and genus level, a total of 43 families and 45 genera (relative abundance > 0.1%) were obtained, and the correlation with the yield of P. notoginseng was further analyzed. Nitrosomonadaceae, Xanthomonadaceae, Mycobacterium and Arthrobacter that were enriched in soils with higher yields were positively correlated with P. notoginseng yields, thereby suggesting that they might increase yields. Negative correlation coefficients indicated that Xanthobacteraceae, Caulobacteraceae, Oxalobacteraceae, Chitinophagaceae, Sphingomonas, Hyphomicrobium, Variovorax and Phenylobacterium might be detrimental to P. notoginseng growth. A total of 85 functional traits were significantly (P < 0.05) correlated with P. notoginseng yields. Functional traits, likely steroid biosynthesis and MAPK signaling pathway were positively correlated with P. notoginseng yields. In contrast, functional traits, such as bacterial secretion system, ABC transporters, metabolism of xenobiotics by cytochrome P450 and drug metabolism–cytochrome P450, were negatively associated with yields. Conclusions: This study describes an overview of the rhizosphere microbiome of P. notoginseng with discrepant yields and identifies the taxa and functional traits related to yields. Our results provide valuable information to guide the isolation and culture of potentially beneficial microorganisms and to utilize the power of the microbiome to increase plant yields in a continuous cropping system.


2020 ◽  
Author(s):  
Mengzhi Li ◽  
Zhongjian Chen ◽  
Jun Qian ◽  
Fugang Wei ◽  
Guozhuang Zhang ◽  
...  

Abstract Background Panax notoginseng is a highly valuable medicinal plant. Reduced P. notoginseng yield is a common and serious problem that arises in a continuous cropping system. Variation in the composition and function of soil microbial community is considered the primary cause of yield reduction. Methods This study used shotgun metagenomic sequencing approaches to describe the taxonomic and functional features of P. notoginseng rhizosphere microbiome and screen microbial taxa and functional traits related to yields. Results A total of 43 families and 45 genera (relative abundance > 0.1%) were further confirmed to be related to P. notoginseng yields. Nitrosomonadaceae, Xanthomonadaceae, Mycobacterium and Arthrobacter that were enriched in soils with higher yields were positively correlated with P. notoginseng yields, thereby suggesting that they might increase yields. Negative correlation coefficients indicated that Xanthobacteraceae, Caulobacteraceae, Oxalobacteraceae, Chitinophagaceae, Sphingomonas, Hyphomicrobium, Variovorax and Phenylobacterium might be detrimental to P. notoginseng growth. A total of 85 functional traits were significantly (P < 0.05) correlated with P. notoginseng yields. Functional traits, likely steroid biosynthesis and MAPK signaling pathway were positively correlated with P. notoginseng yields. In contrast, functional traits, such as bacterial secretion system, ABC transporters, metabolism of xenobiotics by cytochrome P450 and drug metabolism–cytochrome P450, were negatively associated with yields. Conclusions This study describes an overview of the rhizosphere microbiome of P. notoginseng with discrepant yields and confirms the taxa and functional traits related to yields. Our results provide valuable information to guide the isolation and culture of potentially beneficial microorganisms and to utilize the power of the microbiome to increase plant yields in a continuous cropping system.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 117
Author(s):  
Stephan O. Adler ◽  
Edda Klipp

Temperature influences the life of many organisms in various ways. A great number of organisms live under conditions where their ability to adapt to changes in temperature can be vital and largely determines their fitness. Understanding the mechanisms and principles underlying this ability to adapt can be of great advantage, for example, to improve growth conditions for crops and increase their yield. In times of imminent, increasing climate change, this becomes even more important in order to find strategies and help crops cope with these fundamental changes. There is intense research in the field of acclimation that comprises fluctuations of various environmental conditions, but most acclimation research focuses on regulatory effects and the observation of gene expression changes within the examined organism. As thermodynamic effects are a direct consequence of temperature changes, these should necessarily be considered in this field of research but are often neglected. Additionally, compensated effects might be missed even though they are equally important for the organism, since they do not cause observable changes, but rather counteract them. In this work, using a systems biology approach, we demonstrate that even simple network motifs can exhibit temperature-dependent functional features resulting from the interplay of network structure and the distribution of activation energies over the involved reactions. The demonstrated functional features are (i) the reversal of fluxes within a linear pathway, (ii) a thermo-selective branched pathway with different flux modes and (iii) the increased flux towards carbohydrates in a minimal Calvin cycle that was designed to demonstrate temperature compensation within reaction networks. Comparing a system’s response to either temperature changes or changes in enzyme activity we also dissect the influence of thermodynamic changes versus genetic regulation. By this, we expand the scope of thermodynamic modelling of biochemical processes by addressing further possibilities and effects, following established mathematical descriptions of biophysical properties.


Sign in / Sign up

Export Citation Format

Share Document