scholarly journals Comparative transcriptome combined with metabolome analyses revealed key factors involved in nitric oxide (NO)-regulated cadmium stress adaptation in tall fescue

2020 ◽  
Author(s):  
Huihui Zhu ◽  
Honglian Ai ◽  
Zhengrong Hu ◽  
Dongyun Du ◽  
Jie Sun ◽  
...  

Abstract Background: It has been reported that nitric oxide (NO) could ameliorate cadmium (Cd) toxicity in tall fescue; however, the underlying mechanisms of NO mediated Cd detoxification are largely unknown. In this study, we investigated the possible molecular mechanisms of Cd detoxification process by comparative transcriptomic and metabolomic approaches. Results: The application of Sodium nitroprusside (SNP) as NO donor decreased the Cd content of tall fescue by 11% under Cd stress (T1 treatment), but the Cd content was increased by 24% when treated with Carboxy-PTIO (c-PTIO) together with Nitro-L-arginine methyl ester (L-NAME) (T2 treatment). RNA-seq analysis revealed that 904 (414 up- and 490 down-regulated) and 118 (74 up- and 44 down-regulated) DEGs were identified in the T1 vs Cd (only Cd treatment) and T2 vs Cd comparisons, respectively. Moreover, metabolite profile analysis showed that 99 (65 up- and 34-down- regulated) and 131 (45 up- and 86 down-regulated) metabolites were altered in the T1 vs Cd and T2 vs Cd comparisons, respectively. The integrated analyses of transcriptomic and metabolic data showed that 81 DEGs and 15 differentially expressed metabolites were involved in 20 NO-induced pathways. The dominant pathways were antioxidant activities such as glutathione metabolism, arginine and proline metabolism, secondary metabolites such as flavone and flavonol biosynthesis and phenylpropanoid biosynthesis, ABC transporters, and nitrogen metabolism.Conclusions: In general, the results revealed that there are three major mechanisms involved in NO-mediated Cd detoxification in tall fescue, including (a) antioxidant capacity enhancement; (b) accumulation of secondary metabolites related to cadmium chelation and sequestration; and (c) regulation of cadmium ion transportation, such as ABC transporter activation. In conclusion, this study provides new insights into the NO-mediated cadmium stress response.

2020 ◽  
Author(s):  
Huihui Zhu ◽  
Honglian Ai ◽  
Zhengrong Hu ◽  
Dongyun Du ◽  
Jie Sun ◽  
...  

Abstract Background: It has been reported that nitric oxide (NO) could ameliorate cadmium (Cd) toxicity in tall fescue; however, the underlying mechanisms of NO mediated Cd detoxification are largely unknown. In this study, we investigated the possible molecular mechanisms of Cd detoxification process by comparative transcriptomic and metabolomic approaches. Results: The application of Sodium nitroprusside (SNP) as NO donor decreased the Cd content of tall fescue by 11% under Cd stress (T1 treatment), but the Cd content was increased by 24% when treated with Carboxy-PTIO (c-PTIO) together with Nitro-L-arginine methyl ester (L-NAME) (T2 treatment). RNA-seq analysis revealed that 904 (414 up- and 490 down-regulated) and 118 (74 up- and 44 down-regulated) DEGs were identified in the T1 vs Cd (only Cd treatment) and T2 vs Cd comparisons, respectively. Moreover, metabolite profile analysis showed that 99 (65 up- and 34-down- regulated) and 131 (45 up- and 86 down-regulated) metabolites were altered in the T1 vs Cd and T2 vs Cd comparisons, respectively. The integrated analyses of transcriptomic and metabolic data showed that 81 DEGs and 15 differentially expressed metabolites were involved in 20 NO-induced pathways. The dominant pathways were antioxidant activities such as glutathione metabolism, arginine and proline metabolism, secondary metabolites such as flavone and flavonol biosynthesis and phenylpropanoid biosynthesis, ABC transporters, and nitrogen metabolism.Conclusions: In general, the results revealed that there are three major mechanisms involved in NO-mediated Cd detoxification in tall fescue, including (a) antioxidant capacity enhancement; (b) accumulation of secondary metabolites related to cadmium chelation and sequestration; and (c) regulation of cadmium ion transportation, such as ABC transporter activation. In conclusion, this study provides new insights into the NO-mediated cadmium stress response.


2020 ◽  
Author(s):  
Liang Chen ◽  
Huihui Zhu ◽  
Honglian Ai ◽  
Zhengrong Hu ◽  
Dongyun Du ◽  
...  

Abstract Background It has been reported that nitric oxide (NO) could ameliorate cadmium (Cd) toxicity in tall fescue; however, the underlying mechanisms of NO mediated Cd detoxification are largely unknown. In this study, we investigated the possible molecular mechanisms of Cd detoxification process by comparative transcriptomic and metabolomic approaches. Results The application of Sodium nitroprusside (SNP) as NO donor decreased the Cd content of tall fescue by 11% under Cd stress (T1 treatment), but the Cd content was increased by 24% when treated with c-PTIO together with L-NAME (T2 treatment). RNA-seq analysis revealed that 904 (414 up- and 490 down-regulated) and 118 (74 up- and 44 down-regulated) DEGs were identified in the T1 vs Cd and T2 vs Cd comparisons, respectively. Moreover, metabolite profile analysis showed that 99 (65 up- and 34-down- regulated) and 131 (45 up- and 86 down-regulated) metabolites were altered in the T1 vs Cd and T2 vs Cd comparisons, respectively. The integrated analyses of transcriptomic and metabolic data showed that 81 DEGs and 15 differentially expressed metabolites were involved in 20 NO-induced pathways. The dominant pathways were involved in antioxidant activities such as glutathione metabolism, arginine and proline metabolism, secondary metabolites such as flavone and flavonol biosynthesis and phenylpropanoid biosynthesis, ABC transporters, and nitrogen metabolism. Conclusions In general, the results revealed that there are three major mechanisms regulated by NO in Cd stress response in tall fescue: (a) antioxidant capacity enhancement; (b) accumulation of secondary metabolites related to cadmium chelation and sequestration; and (c) regulation of cadmium ion transportation, such as ABC transporter activation. In conclusion, this study provides new insights into the NO-mediated cadmium stress response.


2018 ◽  
Vol 45 (2) ◽  
pp. 267 ◽  
Author(s):  
Parankusam Santisree ◽  
Pooja Bhatnagar-Mathur ◽  
Kiran K. Sharma

The molecular mechanisms and targets of nitric oxide (NO) are not fully known in plants. Our study reports the first large-scale quantitative proteomic analysis of NO donor responsive proteins in chickpea. Dose response studies carried out using NO donors, sodium nitroprusside (SNP), diethylamine NONOate (DETA) and S-nitrosoglutathione (GSNO) in chickpea genotype ICCV1882, revealed a dose dependent positive impact on seed germination and seedling growth. SNP at 0.1 mM concentration proved to be most appropriate following confirmation using four different chickpea genotypes. while SNP treatment enhanced the percentage of germination, chlorophyll and nitrogen contents in chickpea, addition of NO scavenger, cPTIO reverted its impact under abiotic stresses. Proteome profiling revealed 172 downregulated and 76 upregulated proteins, of which majority were involved in metabolic processes (118) by virtue of their catalytic (145) and binding (106) activity. A few crucial proteins such as S-adenosylmethionine synthase, dehydroascorbate reductase, pyruvate kinase fragment, 1-aminocyclopropane-1-carboxylic acid oxidase, 1-pyrroline-5-carboxylate synthetase were less abundant whereas Bowman-Birk type protease inhibitor, non-specific lipid transfer protein, chalcone synthase, ribulose-1-5-bisphosphate carboxylase oxygenase large subunit, PSII D2 protein were highly abundant in SNP treated samples. This study highlights the protein networks for a better understanding of possible NO induced regulatory mechanisms in plants.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12586
Author(s):  
Phoomjai Sornsenee ◽  
Moragot Chatatikun ◽  
Watcharapong Mitsuwan ◽  
Kantapich Kongpol ◽  
Nateelak Kooltheat ◽  
...  

Background Probiotics can release bioactive substances known as postbiotics, which can inhibit pathogenic microorganisms, improve immunomodulation, reduce antioxidant production, and modulate the gut microbiota. Methods In this study, we evaluated the in vitro antimicrobial effects, antioxidant activity, and anti-inflammatory potential of 10 lyophilized cell-free supernatants (LCFS) of Lactobacillus isolates. LCFS was obtained via centrifugation and subsequent lyophilization of the supernatant collected from the culture medium ofeach isolate. The antibacterial and antibiofilm activities of the LCFS were determined using broth microdilution. The antioxidant potential was evaluated by measuring the total phenolic and flavonoid contents and 2,2-Diphennyl-1-picrylhydrazyl (DPPH) and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+) radical scavenging activities. Results All the isolates were able to inhibit the four tested pathogens. The isolates exhibited strong antibiofilm activity and eradicated the biofilms formed by Acinetobacter buamannii and Escherichia coli. All the prepared Lactobacillus LCFS contained phenols and flavonoids and exhibited antioxidant activities in the DPPH and ABTS+ radical scavenging assays. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay revealed that LCFS was not cytotoxic to RAW 264.7 cells. In addition, the ten Lactobacillus LCFS decreased the production of nitric oxide. Conclusions All the isolates have beneficial properties. This research sheds light on the role of postbiotics in functional fermented foods and pharmaceutical products. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.


Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3440-3448 ◽  
Author(s):  
Weifa Zheng ◽  
Kangjie Miao ◽  
Yanxia Zhang ◽  
Shenyuan Pan ◽  
Meimei Zhang ◽  
...  

A fungal elicitor prepared from the cell debris of the plant-pathogenic ascomycete Alternaria alternata induces multiple responses by Inonotus obliquus cells, including an increase in generation of nitric oxide (NO), activity of phenylalanine ammonia lyase (PAL) and accumulation of total mycelial phenolic compounds (TMP), but does not trigger production of oxylipins or jasmonic acid (JA). The role of NO in TMP production was investigated via the effects of the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO) and the nitric oxide synthase (NOS) inhibitor aminoguanidine (AG). TMP profiles were assayed using 1H NMR spectroscopy combining multivariate pattern recognition strategies. Pretreatment of I. obliquus mycelia with cPITO or AG suppressed not only elicitor-enhanced NO generation and PAL activity, but also the elicitor-induced increase in TMP production. This TMP reduction by either a NO scavenger or a NOS inhibitor was reversed by exogenous addition of either a NO donor, sodium nitroprusside, or JA separately. NMR-based metabonomic analysis of TMP profiles showed that the induced TMP were hispidin analogues including inoscavins, phelligridins, davallialactone and methyldavallialactone, which possess high antioxidant activities. Thus, NO mediates an elicitor-induced increase in production of antioxidant polyphenols in I. obliquus via a signalling pathway independent of oxylipins or JA, a mechanism which differs from those in some higher plants.


Botany ◽  
2019 ◽  
Vol 97 (12) ◽  
pp. 681-690 ◽  
Author(s):  
Masoomeh Nabaei ◽  
Rayhaneh Amooaghaie

Nitric oxide (NO) and melatonin are two biostimulant molecules in plants that not only modulate the growth and development of plants but also confer enhanced tolerance to abiotic stresses. Therefore, in this study, the interactive effects of melatonin and nitric oxide (NO) on seedlings of Catharanthus roseus (L.) G. Don was evaluated under both control and conditions of stress due to Cd. Our results show that both melatonin and sodium nitroprusside (SNP, as an NO donor) significantly improved seedling growth, which was associated with the enhanced concentration of photosynthetic pigments in both the control plants and under Cd-stress conditions. Impacts of both melatonin and SNP were more pronounced in the Cd-stressed plants than control seedlings. The Cd stress increased H2O2 and lipid peroxidation levels in roots. Melatonin, as well as SNP, increased endogenous NO concentration in roots. Both melatonin and SNP enhanced the concentration of proline and the activities of antioxidant enzymes (SOD, POD, APX, CAT) and lowered H2O2 and lipid peroxidation levels in roots of C. roseus plants under Cd stress. These melatonin-induced responses in the roots were suppressed by 4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO), but inhibition of melatonin biosynthesis by p–chlorophenylalanine, could not reverse the protective effects conferred by NO. These outcomes suggest that NO, as a downstream signaling molecule, is implicated in the melatonin-promoted antioxidant responses in roots of C. roseus plants.


2019 ◽  
Vol 20 (2) ◽  
pp. 365 ◽  
Author(s):  
Wei Zhu ◽  
Zhuoheng Zhong ◽  
Shengzhi Liu ◽  
Bingxian Yang ◽  
Setsuko Komatsu ◽  
...  

Morus alba is an important medicinal plant that is used to treat human diseases. The leaf, branch, and root of Morus can be applied as antidiabetic, antioxidant, and anti-inflammatory medicines, respectively. To explore the molecular mechanisms underlying the various pharmacological functions within different parts of Morus, organ-specific proteomics were performed. Protein profiles of the Morus leaf, branch, and root were determined using a gel-free/label-free proteomic technique. In the Morus leaf, branch, and root, a total of 492, 414, and 355 proteins were identified, respectively, including 84 common proteins. In leaf, the main function was related to protein degradation, photosynthesis, and redox ascorbate/glutathione metabolism. In branch, the main function was related to protein synthesis/degradation, stress, and redox ascorbate/glutathione metabolism. In root, the main function was related to protein synthesis/degradation, stress, and cell wall. Additionally, organ-specific metabolites and antioxidant activities were analyzed. These results revealed that flavonoids were highly accumulated in Morus root compared with the branch and leaf. Accordingly, two root-specific proteins named chalcone flavanone isomerase and flavonoid 3,5-hydroxylase were accumulated in the flavonoid pathway. Consistent with this finding, the content of the total flavonoids was higher in root compared to those detected in branch and leaf. These results suggest that the flavonoids in Morus root might be responsible for its biological activity and the root is the main part for flavonoid biosynthesis in Morus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eva YuHua Kuo ◽  
Tse-Min Lee

The acclimation mechanism of Chlamydomonas reinhardtii to nitric oxide (NO) was studied by exposure to S-nitroso-N-acetylpenicillamine (SNAP), a NO donor. Treatment with 0.1 or 0.3 mM SNAP transiently inhibited photosynthesis within 1 h, followed by a recovery, while 1.0 mM SNAP treatment caused irreversible photosynthesis inhibition and mortality. The SNAP effects are avoided in the presence of the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO). RNA-seq, qPCR, and biochemical analyses were conducted to decode the metabolic shifts under NO stress by exposure to 0.3 mM SNAP in the presence or absence of 0.4 mM cPTIO. These findings revealed that the acclimation to NO stress comprises a temporally orchestrated implementation of metabolic processes: (1). modulation of NADPH oxidase (respiratory burst oxidase-like 2, RBOL2) and ROS signaling pathways for downstream mechanism regulation, (2). trigger of NO scavenging elements to reduce NO level; (3). prevention of photo-oxidative risk through photosynthesis inhibition and antioxidant defense system induction; (4). acclimation to nitrogen and sulfur shortage; (5). attenuation of transcriptional and translational activity together with degradation of damaged proteins through protein trafficking machinery (ubiquitin, SNARE, and autophagy) and molecular chaperone system for dynamic regulation of protein homeostasis. In addition, the expression of the gene encoding NADPH oxidase, RBOL2, showed a transient increase while that of RBOL1 was slightly decreased after NO challenge. It reflects that NADPH oxidase, a regulator in ROS-mediated signaling pathway, may be involved in the responses of Chlamydomonas to NO stress. In conclusion, our findings provide insight into the molecular events underlying acclimation mechanisms in Chlamydomonas to NO stress.


2014 ◽  
Vol 1073-1076 ◽  
pp. 114-117 ◽  
Author(s):  
De Wen Li ◽  
Mei Lan Li ◽  
Ying Liu ◽  
Yuan Gang Zu

In this paper, the effect of nitric oxide (NO) on the secondary metabolites of Taxus chinensis var. mairei under elevated UV-B radiation was studied. The 5-year-old seedlings were used as test materials. The sodium nitroprusside (SNP) was as the NO donor and Carboxy-PTIO potassium salt (cPTIO) as the NO scavenger. The results showed that the SNP, UV, UV-B+SNP treatments significantly increased the contents of photosynthetic pigments (p<0.05). The contents of chlorophyll a, chlorophyll b, carotenoid and total chlorophyll exhibited CK < cPTIO < UV-B+cPTIO < UV-B < SNP < UV-B+SNP. SNP, cPTIO, UV-B, UV-B+SNP and UV-B+cPTIO significantly increased the concentrations of flavonoids, condensed tannins, total phenolics and taxol (p<0.05). Spraying SNP and cPTIO had significant effect on the taxol concentration (p<0.05). The concentrations of flavonoids, condensed tannins, total phenolics and taxol reached the maximum under the UV-B+cPTIO treatment. Spraying different concentrations of SNP or cPTIO might affect the NO content in plants, and then impact on the secondary metabolism, which mechanism needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document