Standardization, Physicochemical, Elemental Analysis and Anti-diabetic activity of Powdered Leaves of Chromolaena odorata in Alloxan-induced diabetic Rats

2020 ◽  
Author(s):  
Abdulrasheed Ajao Abdullahi ◽  
B. A. Aremu ◽  
S.A. Atunwa ◽  
S.O. Usman ◽  
N.S. Njinga ◽  
...  

Abstract BackgroundThe prevalence of diabetes is increasing worldwide, but more evidently in developing countries where there is higher incidence of the risk factors. Plants have offered an effective medicine for the treatment of illnesses since the dawn of mankind.The present study is aimed to standardize, determine the physicochemical parameters, element present and anti-diabetic activity of Chromolaenaodorata. Elemental analysis was done using Atomic Absorption Spectroscopy, while Alloxan-induced model was used to determine anti-diabetic activity.MethodologyThe leaves were cleaned and air dried for some days. The following macroscopic characters of the fresh leaves were noted; shape, length, colour, apex, margin, base, leaf arrangement and odour. The microscopy of the surface preparation and cross section of the fresh leaves and powdered leaves were carried out using a light Microscope connected to a standard camera.Alcohol soluble extractive was determined following the method used by Azwanida, (2015). Water soluble extractive was done on the powdered leavesThe moisture content was determined following the method used by Pimentel (2006). An evaporating dish was heated to a constant weight and allowed to cool in a desiccator. Elemental Analysis (K, Na, Mn, Mg and Ca) was carried out on the powdered leaves of Chromolaena odorata using the method of Association of Official Analytical Chemist (AOAC, 1980) with the aid of Atomic Absorption Spectrometer (AAS) GBC Avanta Model. Standards and digested samples were aspirated and the mean signal responses were recorded at each of the element respective wavelengths.The acute toxicity (LD50) test was determined following the method used by Jonsson et al. (2013) with little modification.Alloxan-induced model was used to determine the anti-diabetics activity following method by Rohilia and Ali, (2007) with slight modification.Twenty-Five Albino rats of both sexes weighing 150– 200g were used for the study.The data were expressed as mean ± standard error of mean (SEM). One-way analysis of variance (ANOVA) with Student-Newman-keuls tests was used to analyze the data and results were considered statistically significant at P < 0.05 when compared to the control.ResultsThe macroscopic evaluation reviewed a triangular shape, height of 6-10cm, pungent odour, acuminate apex, opposite leaf arrangement, dentate margin, hastate base and a green colour leaf. The microscopic study of both the fresh and powdered leaves of C. odorata showed the presence of anisocytic and anomocytic stomata, as well as multicellular uniseriate covering trichomes. The moisture content was 6.0 ±0.07%, the alcohol soluble extractive was 30±0.05%. while the water-soluble extractive was 40±0.05%. %. The elemental analysis of the powdered leaves of C. odorata showed that the leaves contains 29.00mg/L of K, 13.500mg/L of Na, 0.15mg/L of Mn, 4.78mg/L of Mg and 0.30mg/L of Ca.The powdered leaves showed a dose dependent anti-diabetic activity as 300 mg/kg significantly reduced the blood glucose level when compared to the negative control (p<0.05) on day 7, 14 and day 21. The 200 mg/kg dose showed significant reduction on day 14 and day 21 and the 100 mg/kg only on day 21.ConclusionThe presence of phytochemicals such as alkaloids, tannins, terpenoids and flavonoids, as well as elements such as Na, K, Mn and Mgin C. odorata could be responsible for an increase stimulate the production of insulin from the pancreas thus leading to reduction in the blood glucose level. The study suggest that the powdered leaves of C.odorata possess anti-diabetic activity

2018 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Sentot Joko Raharjo

White bentul tuber is one of tuber plant species which have bioactive compound of Water Soluble Polysaccharide (WSP) and potentially healthy nutrition in the therapy of metabolic syndrome disease. The purpose of this research is to prove the ability of WSP isolate to reduce blood glucose level in white mice.  Research method include the yield of WSP isolates white bentul tuber using enzymatic method, WSP identification using HPLC with Aminex HPX-87C BIORAD5 columns, and antidiabetic activity test using white mices. Test activity was performed in six treatment groups (Normal, Induction STZ 20 mg/ kgBW, Induction STZ 20 mg / kgBW + metformin 195mg / KgBW, three treatment with STZ induction 20 mg/ kgBW and WSP isolate with concentration 200, 400, and 600mg / kgBW). Determination of blood glucose levels using glucometer and supported by observation of histologic improvement of beta pancreatic cells in white mice that have necrosis. The result research are WSP yield of 4.81% and WSP level of 94.45%. Results of blood glucose levels of mice induced STZ 20mg/kgBW decreased optimal blood glucose with a dose of WSP 400mg/kgBW in the first week and histologic improvement of beta pancreatic cells that experienced the most optimal necrosis at WSP dose of 200 mg/kgBW. The conclusion of this research is the provision WSP isolate of white bentul tubers at doses of 200, 400, 600 mg/kgBW can decrease the blood glucose level induced STZ 20mg/kg BW and histological improvement in pancreatic beta cells at the most optimal dose of 200 mg / kgKeywords: White bentul tuber, water soluble polysaccharides, diabetes mellitus, beta pancratic cells   


2019 ◽  
pp. 52-56
Author(s):  
Yu.F. Glukhov ◽  
N.V. Krutikov ◽  
A.V. Ivanov ◽  
N.P. Muravskaya

We have studied and analyzed status and metrological supervision of blood glucose monitors, individual devices for a person’s blood glucose level measurement. It has been indicated that nowadays blood glucose monitors like other individual devices for medical measurement are not allowed to be involved in telemedicine public service. This accounts for absence of metrological supervision with these measurement devices in telemedicine. In addition, the key problem is absence of safe methods and means of remote verificaition, calibration and transmission of measurement data to health care centers. The article offers a remote test method for blood glucose monitors using a number of resistors with values correlating with measured blood glucose level. The available method has been successfully trialed in real practice.


2010 ◽  
Vol 5 (2) ◽  
pp. 87
Author(s):  
Rusman Efendi ◽  
Evy Damayanthi ◽  
Lilik Kustiyah ◽  
Nastiti Kusumorini

<p class="MsoNormal" style="margin: 0cm 7.1pt 6pt 14.2pt; text-align: justify; text-indent: 1cm;"><span style="font-size: 10pt;">Diabetes mellitus is degeneratif disease with high prevalence that happens in many countries. Several studies had been done to control diabetes by using green tea, mullberry leaf  tea, and their mixture. The aim of this research was to analyze the influence of the administration green tea, mullbery leaf tea, and their mixtures to blood glucose level of diabetic rats both during 120 minutes after administration. This research had four phases, first to determine the best mullberry leaf tea, second to fourth phases respectively, determine turnover of blood glucose level on normal rats; attempt during 120 minutes on diabetic rats.  The result of research during 120 minutes have showed that blood glucose level on diabetic rats which were administered by green tea, mullberry leaf tea and their mixture is significantly difference with diabetic rats which were administered by water. Blood glucose level at baseline increased at 30<sup>th </sup>minutes and showed the difference significantly and then until 60<sup>th</sup> and 120<sup>th</sup> minutes and relatively stable. During 120 minutes after feed consumption, inhibition of blood glucose level occured increasingly on diabetic rats which were administered by green tea, mullberry leaf tea, and their mixture compared to diabetic rats which were administered by water.</span></p>


2020 ◽  
Vol 11 (4) ◽  
pp. 5067-5070
Author(s):  
Pang Jyh Chayng ◽  
Nurul Ain ◽  
Kaswandi Md Ambia ◽  
Rahim Md Noah

The purpose of this project is to study the anti-diabetic effect of on a diabetic rat model. A total of Twenty male Sprague rats were used and it randomly distributed into four groups which are Group I: , Group II: negative control, Group III: and Group IV: and . In diabetic model were induced with via injection at the dosage of 65mg/kg. and FBG (Fasting Blood Glucose) level of diabetic rats were assessed every three days. Blood was collected via cardiac puncture at day 21 after the induction of treatment. Insulin level of the rats was assessed with the Mercodia Rat Insulin ELISA kit. FBG level of group I (12.16 ±3.96, p&lt;0.05) and group IV (11.34 ±3.67, p&lt;0.05) were significantly decreased. Meanwhile, the for all rats did not show any significant increase. However, the insulin level was escalated in group IV (0.74+0.25, p&lt;0.05) significantly. The present study shows that the and the combination of and lowered blood glucose level and enhanced insulin secretion.


Author(s):  
Adel M. Aly ◽  
Ahmed S. Ali

: Glipizide (GZ) is an oral blood-glucose-lowering drug of the sulfonylurea class characterized by its poor aqueous solubility. Aiming for the production of GZ tablets with rapid onset of action followed by prolonged effect; GZ-Polyethylene glycol (PEG 4000 and 6000) solid dispersions with different ratios, (using melting and solvent evaporation method), as well as, coprecipitate containing GZ with polymethyl-methacrylate (PMMA) were prepared. Four tablet formulations were prepared containing; a) GZ alone, b) GZ: PEG6000, 1:10, c) GZ:PMMA 1:3, and, d)both GZ:PEG6000 1:10 and GZ:PMMA 1:3. The solvent evaporation method showed more enhancement of GZ solubility than the melting one, and this solubilizing effect increased with PEG increment. Generally, PEG6000 showed more enhancement of dissolution than PEG4000 especially at 1:10 drug: polymer ratio (the most enhancing formula). Also, the prepared tablet formulations showed acceptable physical properties according to USP/NF requirements. The dissolution results revealed that tablets containing PEG6000 (1:10) have the most rapid release rate, followed by the formula containing both PEG6000 and PMMA, while that including PMMA alone showed the slowest dissolution rate. Moreover, In-vivo studies for each of the above four formulations, were performed using four mice groups. The most effective formula in decreasing the blood glucose level, through the first 6 hours, was that containing GZ and PEG6000, 1:10. However, formula containing the combination of enhanced and sustained GZ was the most effective in decreasing the blood glucose level through 16 hours. Successful in-vitro in-vivo correlations could be detected between the percent released and the percent decreasing of blood glucose level after 0.5 hours.


2019 ◽  
Vol 16 (1) ◽  
pp. 40-46
Author(s):  
Rui Guo ◽  
Ruiqi Chen ◽  
Chao You ◽  
Lu Ma ◽  
Hao Li ◽  
...  

Background and Purpose: Hyperglycemia is reported to be associated with poor outcome in patients with spontaneous Intracerebral Hemorrhage (ICH), but the association between blood glucose level and outcomes in Primary Intraventricular Hemorrhage (PIVH) remains unclear. We sought to identify the parameters associated with admission hyperglycemia and analyze the impact of hyperglycemia on clinical outcome in patients with PIVH. Methods: Patients admitted to Department of Neurosurgery, West China Hospital with PIVH between 2010 and 2016 were retrospectively included in our study. Clinical, radiographic, and laboratory data were collected. Univariate and multivariate logistic regression analyses were used to identify independent predictors of poor outcomes. Results: One hundred and seventy patients were included in the analysis. Mean admission blood glucose level was 7.78±2.73 mmol/L and 10 patients (5.9%) had a history of diabetes mellitus. History of diabetes mellitus (P = 0.01; Odds Ratio [OR], 9.10; 95% Confidence Interval [CI], 1.64 to 50.54) was independent predictor of admission critical hyperglycemia defined at 8.17 mmol/L. Patients with admission critical hyperglycemia poorer outcome at discharge (P < 0.001) and 90 days (P < 0.001). After adjustment, admission blood glucose was significantly associated with discharge (P = 0.01; OR, 1.30; 95% CI, 1.06 to 1.59) and 90-day poor outcomes (P = 0.03; OR, 1.27; 95% CI, 1.03 to 1.58), as well as mortality at 90 days (P = 0.005; OR, 1.41; 95% CI, 1.11 to 1.78). In addition, admission critical hyperglycemia showed significantly increased the incidence rate of pneumonia in PIVH (P = 0.02; OR, 6.04; 95% CI 1.27 to 28.80) even after adjusting for the confounders. Conclusion: Admission blood glucose after PIVH is associated with discharge and 90-day poor outcomes, as well as mortality at 90 days. Admission hyperglycemia significantly increases the incidence rate of pneumonia in PIVH.


2019 ◽  
Vol 9 (3) ◽  
pp. 248-263 ◽  
Author(s):  
Ashish K. Parashar ◽  
Preeti Patel ◽  
Arun K. Gupta ◽  
Neetesh K. Jain ◽  
Balak Das Kurmi

Background: The present study was aimed at developing and exploring the use of PEGylated Poly (propyleneimine) dendrimers for the delivery of an anti-diabetic drug, insulin. Methods: For this study, 4.0G PPI dendrimer was synthesized by successive Michael addition and exhaustive amidation reactions, using ethylenediamine as the core and acrylonitrile as the propagating agent. Two different activated PEG moieties were employed for PEGylation of PPI dendrimers. Various physicochemical and physiological parameters UV, IR, NMR, TEM, DSC, drug entrapment, drug release, hemolytic toxicity and blood glucose level studies of both PEGylated and non- PEGylated dendritic systems were determined and compared. Results: PEGylation of PPI dendrimers caused increased solubilization of insulin in the dendritic framework as well as in PEG layers, reduced drug release and hemolytic toxicity as well as increased therapeutic efficacy with reduced side effects of insulin. These systems were found to be suitable for sustained delivery of insulin by in vitro and blood glucose-level studies in albino rats, without producing any significant hematological disturbances. Conclusion: Thus, surface modification of PPI dendrimers with PEG molecules has been found to be a suitable approach to utilize it as a safe and effective nano-carrier for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document