scholarly journals Cyclic evolution of phytoplankton forced by changes in tropical seasonality

Author(s):  
Luc Beaufort ◽  
Clara Bolton ◽  
Anta-Clarisse Sarr ◽  
Baptiste Sucheras-Marx ◽  
Yair Rosenthal ◽  
...  

Abstract The effect of global climate cycles driven by Earth’s orbital variations on evolution is poorly understood because of difficulties achieving sufficiently-resolved records of past evolution. The fossil remains of coccolithophores, a key calcifying phytoplankton group, enable an exceptional assessment of the impact of cyclic orbital-scale climate change on evolution because of their abundance in marine sediments, and because coccolithophores demonstrate extreme morphological plasticity in response to the changing environment1,2. Recently, evolutionary genetic analyses linked broad changes in Pleistocene fossil coccolith morphology to species radiation events3. Here, using high-resolution coccolith data, we show that during the last 2.8 million years coccolithophore evolution was forced by Earth’s orbital eccentricity with rhythms of ~100,000 years and 405,000 years - a distinct spectral signature to that of coeval global climate cycles4. Simulations with an Earth System Model5 including the marine carbon cycle6 demonstrate that eccentricity directly impacts the diversity of ecological niches occurring over the annual cycle in the tropical ocean. Reduced seasonality favours species with mid-size coccoliths that bloom year-round, increasing coccolith carbonate export and burial. We posit that eccentricity pacing of phytoplankton evolution contributed to the strong 405,000-year pacing seen in records of the global carbon cycle.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Md Zulfekar Ali ◽  
Gemma Carlile ◽  
Mohammad Giasuddin

The global carbon emission rate, due to energy-driven consumption of fossil fuels and anthropogenic activities, is higher at any point in mankind history, disrupting the global carbon cycle and contributing to a major cause of warming of the planet with air and ocean temperatures, which is rising dangerously over the past century. Climate change presents challenges both direct and indirect for livestock production and health. With more frequent extreme weather events including increased temperatures, livestock health is greatly affected by resulting heat stress, metabolic disorder, oxidative stress, and immune suppression, resulting in an increased propensity for disease incidence and death. The indirect health effects relate to the multiplication and distribution of parasites, reproduction, virulence, and transmission of infectious pathogens and/or their vectors. Managing the growing crossbreeding livestock industry in Bangladesh is also at the coalface for the emerging impacts of climate change, with unknown consequences for the incidence of emerging and re-emerging diseases. Bangladesh is now one of the most vulnerable nations to global climate change. The livestock sector is considered as a major part of food security for Bangladesh, alongside agriculture, and with one of the world’s largest growing economies, the impacts are exaggerated with this disaster. There has been no direct study conducted on the impact of climate  change on livestock health and the diseases in Bangladesh. This review looks to explore the linkage between climate change and livestock health and provide some guidelines to combat the impact on livestock from the Bangladesh perspective. Keywords: Animal health, Climate change, Food security, Heat stress, Oxidative stress.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Mauro Corriere ◽  
Lucía Soliño ◽  
Pedro Reis Costa

Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.


2021 ◽  
Vol 13 (11) ◽  
pp. 2124
Author(s):  
Kamila M. Harenda ◽  
Mateusz Samson ◽  
Radosław Juszczak ◽  
Krzysztof M. Markowicz ◽  
Iwona S. Stachlewska ◽  
...  

Peatlands play an important role in the global carbon cycle due to the high carbon storage in the substrate. Ecosystem production depends, for example, on the solar energy amount that reaches the vegetation, however the diffuse component of this flux can substantially increase ecosystem net productivity. This phenomenon is observed in different ecosystems, but the study of the atmosphere optical properties on peatland production is lacking. In this paper, the presented methodology allowed us to disentangle the diffuse radiation impact on the net ecosystem production (NEP) of Rzecin peatland, Poland. It allowed us to assess the impact of the atmospheric scattering process determined by the aerosol presence in the air mass. An application of atmospheric radiation transfer (ART) and ecosystem production (EP) models showed that the increase of aerosol optical thickness from 0.09 to 0.17 caused NEP to rise by 3.4–5.7%. An increase of the diffusion index (DI) by 0.1 resulted in an NEP increase of 6.1–42.3%, while a DI decrease of 0.1 determined an NEP reduction of −49.0 to −10.5%. These results show that low peatland vegetation responds to changes in light scattering. This phenomenon should be taken into account when calculating the global CO2 uptake estimation of such ecosystems.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 291
Author(s):  
Jinpeng Lu ◽  
Fei Xie ◽  
Hongying Tian ◽  
Jiali Luo

Stratospheric water vapor (SWV) changes play an important role in regulating global climate change, and its variations are controlled by tropopause temperature. This study estimates the impacts of tropopause layer ozone changes on tropopause temperature by radiative process and further influences on lower stratospheric water vapor (LSWV) using the Whole Atmosphere Community Climate Model (WACCM4). It is found that a 10% depletion in global (mid-low and polar latitudes) tropopause layer ozone causes a significant cooling of the tropical cold-point tropopause with a maximum cooling of 0.3 K, and a corresponding reduction in LSWV with a maximum value of 0.06 ppmv. The depletion of tropopause layer ozone at mid-low latitudes results in cooling of the tropical cold-point tropopause by radiative processes and a corresponding LSWV reduction. However, the effect of polar tropopause layer ozone depletion on tropical cold-point tropopause temperature and LSWV is opposite to and weaker than the effect of tropopause layer ozone depletion at mid-low latitudes. Finally, the joint effect of tropopause layer ozone depletion (at mid-low and polar latitudes) causes a negative cold-point tropopause temperature and a decreased tropical LSWV. Conversely, the impact of a 10% increase in global tropopause layer ozone on LSWV is exactly the opposite of the impact of ozone depletion. After 2000, tropopause layer ozone decreased at mid-low latitudes and increased at high latitudes. These tropopause layer ozone changes at different latitudes cause joint cooling in the tropical cold-point tropopause and a reduction in LSWV. Clarifying the impacts of tropopause layer ozone changes on LSWV clearly is important for understanding and predicting SWV changes in the context of future global ozone recovery.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Sign in / Sign up

Export Citation Format

Share Document