scholarly journals Hydrogen-Rich Water Improvement of Root Growth in Maize Exposed to Saline Stress

Author(s):  
Liyan Yang ◽  
Jingyun Tian ◽  
Manxi Zhu ◽  
Bo Yu ◽  
YI Sun

Abstract Background: Hydrogen gas (H2) is a newly-discovered signaling molecular that plays an important role in plants. This study investigated physiological and molecular mechanisms of hydrogen-rich water (HRW)-mediated beneficial effects on maize roots exposed to saline stress. Results: The results showed that growth of maize seedlings treated with 150 mM NaCl was greatly reduced. Under saline stress, 50% HRW diminished lipid damage in root which was confirmed by malondialdehyde (MDA) content assay and root histochemical staining, and the decreased activities of dismutase (SOD) and peroxidase (POD) further verified the reduced oxidant damage in roots cells under saline stress. HRW up-regulated the expression of ZmSOS1, ZmSKOR, and especially CDPK21 under saline stress, and it also stimulated the activities of PM H+-ATPase and tonoplast H+-ATPase and H+-PPase in maize roots. Thereby, Na+ content was decreased and K+ uptake was increased with the application of HRW. Conclusion: In summary, under saline stress, exogenous HRW application on maize roots up-regulated the key genes expression, improved H+-transport activity and thereby maintained the Na+/K+ balance, diminished oxidant damage and therefore promoted the root growth and biomass accumulation. Our results suggested exogenous HRW treatment on maize could improve root development under saline conditions and might be applied to alleviate salinity stress.

Biologia ◽  
2014 ◽  
Vol 69 (9) ◽  
Author(s):  
Zuzana Kochanová ◽  
Katarína Jašková ◽  
Barbora Sedláková ◽  
Miroslava Luxová

AbstractThe present study was conducted to evaluate the effect of different salt concentrations (50 and 200 mM NaCl) on growth, permeability properties (electrolyte leakage, cell viability) and activity of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in roots of maize seedlings. Both salt concentrations significantly affected growth and permeability properties of maize seedling roots and this negative effect increased with concentration of salt and duration of experiments. On the other hand salinity induced only small changes in the activities of GS and GDH, usually small increase in the activity was observed. To characterise the possible protective effect of silicon (Si) on maize roots exposed to saline stress, different concentrations of Si were simultaneously applied to both, low (50 mM) and high (200 mM) salt concentrations. Possible protective effects of Si on studied parameters were analysed in time range of 3 days treatment with the most positive effect on salt-induced root growth inhibition at high salt concentration and electrolyte leakage. The results show significant increase in GDH activity under all the tested conditions, although the mechanisms underlying this increase have not been elucidated. The results indicate that silicon may ameliorate the salt-induced root growth inhibition and increase the plant vigour at stressful conditions.


2020 ◽  
Vol 26 (12) ◽  
pp. 1251-1262 ◽  
Author(s):  
Octavio Binvignat ◽  
Jordi Olloquequi

: The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. : Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington’s disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. : In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.


2020 ◽  
Vol 26 ◽  
Author(s):  
Longna Li ◽  
Wang Lou ◽  
Lingshuai Kong ◽  
Wenbiao Shen

Abstract:: The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environment pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to low carbon economy, and has great potential to provide “safe, tasty, healthy, and highyield” agricultural products so that it may improve the sustainability of agriculture.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


2021 ◽  
Vol 6 (2) ◽  
pp. 48
Author(s):  
Elisa Innocenzi ◽  
Ida Cariati ◽  
Emanuela De Domenico ◽  
Erika Tiberi ◽  
Giovanna D’Arcangelo ◽  
...  

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1–3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1–3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4−) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.


Author(s):  
Lei Lu ◽  
Meng Chang ◽  
Xiao Han ◽  
Qiuping Wang ◽  
Jiayi Wang ◽  
...  

2015 ◽  
Vol 129 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Mamoru Satoh ◽  
Yuji Takahashi ◽  
Tsuyoshi Tabuchi ◽  
Yoshitaka Minami ◽  
Makiko Tamada ◽  
...  

Coronary artery disease (CAD) is the leading cause of death worldwide. The efficacy and safety of statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) in primary and secondary prevention of CAD are confirmed in several large studies. It is well known that statins have some pleiotropic, anti-atherosclerotic effects. We review the molecular mechanisms underlying the beneficial effects of statins revealed in recently published studies. Endothelial cell injury is regarded as the classic stimulus for the development of atherosclerotic lesions. In addition, the inflammatory process plays an important role in the aetiology of atherosclerosis. In particular, chronic inflammation plays a key role in coronary artery plaque instability and subsequent occlusive thrombosis. Our previous reports and others have demonstrated beneficial effects of statins on endothelial dysfunction and chronic inflammation in CAD. A better understanding of the molecular mechanism underlying the effectiveness of statins against atherosclerosis may provide a novel therapeutic agent for the treatment of coronary atherosclerosis. The present review summarizes the cellular and molecular mechanism of statins against coronary atherosclerosis.


Author(s):  
Adriana Mišúthová ◽  
Ľudmila Slováková ◽  
Karin Kollárová ◽  
Marek Vaculík
Keyword(s):  

Author(s):  
Ayasa Ochiai ◽  
Mahmoud Ben Othman ◽  
Kazuichi Sakamoto

Abstract Kaempferol (KPF) is a dietary polyphenol reported to have various beneficial effects on human health. However, its molecular mechanisms in regulating lipid and glucose metabolism are not fully understood. This study examined the effects of KPF on obesity, dyslipidemia, and diabetes in Tsumura, Suzuki, Obese Diabetes (TSOD) mice. The six-week administration of KPF decreased fat weight, serum total cholesterol, and low-density lipoproteins (LDLs); increased high-density lipoproteins (HDLs); and improved glucose tolerance. Additionally, KPF increased LDL receptor (LDLR) and apolipoprotein A1 (ApoA1) gene expression and decreased serum resistin levels. These findings suggest that the decrease in LDL and the increase in HDL caused by KPF may be due to increases in hepatic LDLR and ApoA1 expression, respectively. Furthermore, it is possible that the improvement in glucose tolerance by KPF may occur via resistin reduction. These mechanisms may be parts of complex mechanism by which KPF improves metabolic syndrome.


2019 ◽  
Vol 653 ◽  
pp. 675-683 ◽  
Author(s):  
Le Yue ◽  
Feiran Chen ◽  
Kaiqiang Yu ◽  
Zhenggao Xiao ◽  
Xiaoyu Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document