scholarly journals Imaging of Neuroinflammation Due to Repetitive Head Injury in Currently Active Kickboxers

Author(s):  
Gilles N. Stormezand ◽  
Janine Doorduin ◽  
Sandra E. Rakers ◽  
Joke M. Spikman ◽  
Joukje van der Naalt ◽  
...  

Abstract PURPOSEChronic traumatic encephalopathy refers to a neurodegenerative disease resulting from repetitive head injury of participants in contact sports. Similar to other neurodegenerative diseases, neuroinflammation is thought to play a role in the onset and progression of the disease. Limited knowledge is regarding the neuroinflammatory consequences of repetitive head injury in currently active contact sports athletes. PET imaging of the 18-kDa translocator protein (TSPO) allows quantification of microglial activation in vivo, a marker of neuroinflammation. METHODS11 rank A kickboxers and 11 age matched controls underwent TSPO PET using [11C]-PK11195, anatomical MRI, diffusion tensor imaging and neuropsychological testing. Relevant imaging parameters were derived an correlated with the outcomes on the neuropsychological testing.RESULTSOn a group level, no statistically significant differences were detected in non displacable binding potential (BPND) using PET. DTI parameters did not differ between groups. Individually, 3 kick boxers showed increased BPND’s in widespread regions of the brain without a correlation with other modalities.CONCLUSIONDespite negative results on a group level, individual results suggest that neuroinflammation may be present as a consequence of repetitive head injury in active kickboxers. Future studies using a longitudinal design may determine whether the observed TSPO upregulation is related to the future development of neuropsychiatric symptoms.

2013 ◽  
Vol 119 (5) ◽  
pp. 1235-1245 ◽  
Author(s):  
Julian E. Bailes ◽  
Anthony L. Petraglia ◽  
Bennet I. Omalu ◽  
Eric Nauman ◽  
Thomas Talavage

Research now suggests that head impacts commonly occur during contact sports in which visible signs or symptoms of neurological dysfunction may not develop despite those impacts having the potential for neurological injury. Recent biophysics studies utilizing helmet accelerometers have indicated that athletes at the collegiate and high school levels sustain a surprisingly high number of head impacts ranging from several hundred to well over 1000 during the course of a season. The associated cumulative impact burdens over the course of a career are equally important. Clinical studies have also identified athletes with no readily observable symptoms but who exhibit functional impairment as measured by neuropsychological testing and functional MRI. Such findings have been corroborated by diffusion tensor imaging studies demonstrating axonal injury in asymptomatic athletes at the end of a season. Recent autopsy data have shown that there are subsets of athletes in contact sports who do not have a history of known or identified concussions but nonetheless have neurodegenerative pathology consistent with chronic traumatic encephalopathy. Finally, emerging laboratory data have demonstrated significant axonal injury, blood-brain barrier permeability, and evidence of neuroinflammation, all in the absence of behavioral changes. Such data suggest that subconcussive level impacts can lead to significant neurological alterations, especially if the blows are repetitive. The authors propose “subconcussion” as a significant emerging concept requiring thorough consideration of the potential role it plays in accruing sufficient anatomical and/or physiological damage in athletes and military personnel, such that the effects of these injuries are clinically expressed either contemporaneously or later in life.


Author(s):  
Alessandra Costanza ◽  
Michalina Radomska ◽  
Francesco Zenga ◽  
Andrea Amerio ◽  
Andrea Aguglia ◽  
...  

Chronic traumatic encephalopathy (CTE) results from repetitive brain injuries and is a common neurotraumatic sequela in contact sports. CTE is often accompanied by neuropsychiatric symptoms, which could escalate to suicidal ideation (SI) and suicidal behaviour (SB). Nevertheless, fairly limited emphasis about the association between suicidality and CTE exists in medical literature. Here, we report two cases of retired professional athletes in high contact sports (boxing and ice hockey) who have developed similar clinical trajectories characterized by progressive neuropsychiatric symptoms compatible with a CTE diagnosis and subsequent SB in its severe forms (medical serious suicide attempt (SA) and completed suicide). In addition to the description of outlining clinical, neuropsychological, neuroimaging, and differential diagnosis elements related to these cases, we also hypothesized some mechanisms that might augment the suicide risk in CTE. They include those related to neurobiological (neuroanatomic/neuroinflammatory) dysfunctions as well as those pertaining to psychiatry and psychosocial maladaptation to neurotraumas and retirement from professional competitive activity. Findings described here can provide clinical pictures to improve the identification of patients with CTE and also potential mechanistic insights to refine the knowledge of eventual severe SB development, which might enable its earlier prevention.


Concussion ◽  
2019 ◽  
pp. 239-244
Author(s):  
Brian Hainline ◽  
Lindsey J. Gurin ◽  
Daniel M. Torres

Although a correlation has been noted between brain injury and chronic traumatic encephalopathy, a causal connection between the two has never been demonstrated. Chronic traumatic encephalopathy is a neurodegenerative condition similar to conditions such as Alzheimer’s disease and frontotemporal degeneration. Chronic traumatic encephalopathy can only be diagnosed post mortem, but attempts are underway to develop objective diagnostic tests in living individuals. When individuals who have a history of presumed head injury present with neuropsychiatric symptoms such as behavioral changes or cognitive decline, they should undergo a full neuropsychiatric workup and be managed appropriately for their symptoms.


Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S17.1-S17
Author(s):  
Haruo Nakayama ◽  
Yu Hiramoto ◽  
Yuriko Numata ◽  
Satoshi Fujita ◽  
Nozomi Hirai ◽  
...  

ObjectiveTo evaluate the relationship between functional anisotropy (FA) and neuropsychological evaluation in concussion.MethodsDiffusion tensor MRI included FA of the Brain and neuropsychological evaluation were conducted on 10 patients with concussion who were diagnosed from April 2017 to March 2018. FA was extracted from 2 regions of interest in Corpus callosum (CC) and corticospinal tract (CT). Detailed neuropsychological testing with an emphasis on Working memory (WM) and Processing speed (PS) was also conducted. The FA value in that 2 regions were compared between the 2 groups of 5 patients (group F) who failed either in WM or PS and 5 cases (group NF) who did not admit it.ResultsMean FA values in CC and CT in the Group F were 0.70 and 0.52. Mean FA values in CC and CT in the Group NF were 0.48 and 0.55.ConclusionsOur result suggests that the FA value of CC did not explain the significant fluctuation of the neuropsychological function. However, FA value in CT were shown to explain the fluctuation of WM and PS.


2021 ◽  
pp. jnnp-2021-326604
Author(s):  
Melisa Gumus ◽  
Alexandra Santos ◽  
Maria Carmela Tartaglia

Postconcussion syndrome (PCS) is a term attributed to the constellation of symptoms that fail to recover after a concussion. PCS is associated with a variety of symptoms such as headaches, concentration deficits, fatigue, depression and anxiety that have an enormous impact on patients’ lives. There is currently no diagnostic biomarker for PCS. There have been attempts at identifying structural and functional brain changes in patients with PCS, using diffusion tensor imaging (DTI) and functional MRI (fMRI), respectively, and relate them to specific PCS symptoms. In this scoping review, we appraised, synthesised and summarised all empirical studies that (1) investigated structural or functional brain changes in PCS using DTI or fMRI, respectively, and (2) assessed behavioural alterations in patients with PCS. We performed a literature search in MEDLINE (Ovid), Embase (Ovid) and PsycINFO (Ovid) for primary research articles published up to February 2020. We identified 8306 articles and included 45 articles that investigated the relationship between DTI and fMRI parameters and behavioural changes in patients with PCS: 20 diffusion, 20 fMRI studies and 5 papers with both modalities. Most frequently studied structures were the corpus callosum, superior longitudinal fasciculus in diffusion and the dorsolateral prefrontal cortex and default mode network in the fMRI literature. Although some white matter and fMRI changes were correlated with cognitive or neuropsychiatric symptoms, there were no consistent, converging findings on the relationship between neuroimaging abnormalities and behavioural changes which could be largely due to the complex and heterogeneous presentation of PCS. Furthermore, the heterogeneity of symptoms in PCS may preclude discovery of one biomarker for all patients. Further research should take advantage of multimodal neuroimaging to better understand the brain–behaviour relationship, with a focus on individual differences rather than on group comparisons.


Author(s):  
Marissa A. Gogniat ◽  
Catherine M. Mewborn ◽  
Talia L. Robinson ◽  
Kharine R. Jean ◽  
L. Stephen Miller

The population of older adults is increasing, indicating a need to examine factors that may prevent or mitigate age-related cognitive decline. The current study examined whether microstructural white matter characteristics mediated the relation between physical activity and executive function in older adults without any self-reported psychiatric and neurological disorders or cognitive impairment (N = 43, mean age = 73 y). Physical activity was measured by average intensity and number of steps via accelerometry. Diffusion tensor imaging was used to examine microstructural white matter characteristics, and neuropsychological testing was used to examine executive functioning. Parallel mediation models were analyzed using microstructural white matter regions of interest as mediators of the association between physical activity and executive function. Results indicated that average steps was significantly related to executive function (β = 0.0003, t = 2.829, P = .007), while moderate to vigorous physical activity was not (β = 0.0007, t = 1.772, P = .08). White matter metrics did not mediate any associations. This suggests that microstructural white matter characteristics alone may not be the mechanism by which physical activity impacts executive function in aging.


2018 ◽  
Vol 66 (1) ◽  
pp. 37-55 ◽  
Author(s):  
Scott L. Zuckerman ◽  
Benjamin L. Brett ◽  
Aaron Jeckell ◽  
Aaron M. Yengo-Kahn ◽  
Gary S. Solomon

2017 ◽  
Author(s):  
J. Rasero ◽  
C. Alonso-Montes ◽  
I. Diez ◽  
L. Olabarrieta-Landa ◽  
L. Remaki ◽  
...  

AbstractAlzheimer’s disease (AD) is a chronically progressive neurodegenerative disease highly correlated to aging. Whether AD originates by targeting a localized brain area and propagates to the rest of the brain across disease-severity progression is a question with an unknown answer. Here, we aim to provide an answer to this question at the group-level by looking at differences in diffusion-tensor brain networks. In particular, making use of data from Alzheimer's Disease Neuroimaging Initiative (ADNI), four different groups were defined (all of them matched by age, sex and education level): G1 (N1=36, healthy control subjects, Control), G2 (N2=36, early mild cognitive impairment, EMCI), G3 (N3=36, late mild cognitive impairment, LMCI) and G4 (N4=36, AD). Diffusion-tensor brain networks were compared across three disease stages: stage I 3(Control vs EMCI), stage II (Control vs LMCI) and stage III (Control vs AD). The group comparison was performed using the multivariate distance matrix regression analysis, a technique that was born in genomics and was recently proposed to handle brain functional networks, but here applied to diffusion-tensor data. The results were three-fold: First, no significant differences were found in stage I. Second, significant differences were found in stage II in the connectivity pattern of a subnetwork strongly associated to memory function (including part of the hippocampus, amygdala, entorhinal cortex, fusiform gyrus, inferior and middle temporal gyrus, parahippocampal gyrus and temporal pole). Third, a widespread disconnection across the entire AD brain was found in stage III, affecting more strongly the same memory subnetwork appearing in stage II, plus the other new subnetworks,including the default mode network, medial visual network, frontoparietal regions and striatum. Our results are consistent with a scenario where progressive alterations of connectivity arise as the disease severity increases and provide the brain areas possibly involved in such a degenerative process. Further studies applying the same strategy to longitudinal data are needed to fully confirm this scenario.


Sign in / Sign up

Export Citation Format

Share Document