scholarly journals Physiological Response and Proteomics Analysis of Reaumuria soongorica Under Salt Stress

Author(s):  
Shipeng Yan ◽  
Peifang Chong ◽  
Ming Zhao ◽  
Hongmei Liu

Abstract Soil salinity can severely restrict plant growth. Yet Reaumuria soongorica can tolerate salinity well. However, large-scale proteomic studies of this plant’s salinity response have yet to reported. Here, R. soongorica seedlings (4 months old) were used in an experiment where NaCl solutions simulated levels of soil salinity stress. The fresh weight, root/shoot ratio, leaf relative conductivity, proline content, and total leaf area of R. soongorica under CK (0 mM NaCl), low (200 mM NaCl), and high (500 mM NaCl) salt stress were determined. The results showed that the proline content of leaves was negatively correlated with salt concentration. With greater salinity, the plant fresh weight, root/shoot ratio, and total leaf area increased initially but then decreased, and vice-versa for the relative electrical conductivity of leaves. Using iTRAQ proteomic sequencing, 47, 177, 136 differentially expressed proteins (DEPs) were identified in low-salt vs. CK, high-salt vs. control, and high-salt vs. low-salt comparisons, respectively. A total of 72 DEPs were further screened from the groups, of which, 34 DEPs increased and 38 DEPs decreased in abundance. These DEPs are mainly involved in translation, ribosomal structure, and biogenesis. Finally, 21 key DEPs (SCORE value ≥ 60 point) were identified as potential targets for salt tolerance of R. soongolica. By comparing the protein structure of treated vs. CK leaves under salt stress, we revealed the key candidate genes underpinning R. soongolica’s salt tolerance ability. This works provides fresh insight into its physiological adaptation strategy and molecular regulatory network, and a molecular basis enhancing breeding, under salt stress conditions.

2020 ◽  
Vol 11 ◽  
pp. e3400
Author(s):  
Genilson Lima Diniz ◽  
Reginaldo Gomes Nobre ◽  
Geovani Soares de Lima ◽  
Leandro de Pádua Souza ◽  
Lauriane Almeida dos Anjos Soares ◽  
...  

The semiarid region of Northeastern Brazil is characterized by long drought periods, and the use of saline waters appears as an alternative for the expansion of irrigated areas. Associated with the use of these waters, silicon fertilization constitutes an important attenuator of salt stress. In this perspective, this study aimed to evaluate the phytomass production and quality of the passion fruit cultivar ‘Gigante Amarelo’ grown with saline water and silicon fertilization. The experiment was conducted in a plant nursery belonging to the Center of Agrifood Science and Technology, in the municipality of Pombal-PB. A completely randomized block design in a 5 x 5 factorial scheme was used, referring to five levels of electrical conductivity of the irrigation water (0.3, 1.0, 1.7, 2.4, and 3.1 dS m-1) and five doses of silicon fertilization (0; 25; 50; 75, and 100 g of potassium silicate/plant), with four replications and two plants per plot. The phytomass accumulation (leaves, stem, and roots), as well as the total dry phytomass, shoot dry phytomass, root/shoot ratio, and the quality index of Dickson were evaluated. The data obtained were subjected to the F-test at 0.01 and 0.05 level of probability. The electrical conductivity of water from 0.3 dS m-1 caused the decrease of phytomass production in seedlings of the passion fruit cultivar ‘Gigante Amarelo’, although it is possible to produce good quality passion fruit seedlings with water salinity up to 3.1 dS m-1. The doses of silicon fertilization mitigated the effect of salt stress on the root/shoot ratio of plants of the passion fruit cultivar ‘Gigante Amarelo’.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Dongfei Han ◽  
Hannes Link ◽  
Werner Liesack

ABSTRACT Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response), and 14 h (late response) of stress exposure. Physiological and transcriptomic stress responses corresponded well. Salt stress induced the differential expression of 301 genes, with sigma factor σ32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH4 to CO2 remained unaffected, while gene expression involved in energy-yielding reactions (nuoA-N) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late stress response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities. IMPORTANCE Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils, where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with changes in soil salinity. Growth and methane oxidation of Methylocystis sp. strain SC2 were not affected by the presence of 0.5% NaCl, while 1% NaCl completely inhibited its activity. This places strain SC2 into the low-salt-tolerance range reported for other Methylocystis species. Our results show that, albeit in a narrow range, strain SC2 is able to respond and adapt to salinity changes. It possesses various stress response mechanisms, which allow resumption of growth within 24 h when exposed to 0.75% NaCl. Presumably, these mechanisms allow Methylocystis spp., such as strain SC2, to thrive in upland soils and to adapt to certain fluctuations in soil salinity.


2021 ◽  
Vol 22 (17) ◽  
pp. 9402
Author(s):  
Tiantian Gan ◽  
Ziwei Lin ◽  
Lijun Bao ◽  
Tian Hui ◽  
Xiaopeng Cui ◽  
...  

Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.


2020 ◽  
Author(s):  
Xiu Jing ◽  
Ping Mi ◽  
Xianzhi Xie ◽  
Baoshan Wang

Abstract Background: Salt stress, one of the most important abiotic stresses, severely reduces crop yields. Identifying salt-tolerant rice germplasm resources at the germination stage, developing salt tolerance indicators, and cultivating salt-tolerant rice cultivars are crucial for improving rice production in saline soil.Results: We measured the germination parameters of 140 japonica rice cultivars on the 7 day after sowing (DAS) in 0 and 150 mmol L−1 NaCl. To accurately assess salt tolerance and identify reliable indicators of salt tolerance, we measured the shoot length (SL), root length (RL), root fresh weight (RFW), shoot fresh weight (SFW), total fresh weight (TFW) and salt tolerance (STI) index after 7 days of salt-stress treatment. The 140 rice cultivars were divided into four categories based on the mean MFVs: highly salt tolerant (HST: 19 cultivars), salt tolerant (ST: 74 cultivars), weakly salt tolerant (WST: 43 cultivars), and salt sensitive (SS: 4 cultivars). Based on the physiological indicators, we established a mathematical model to accurately evaluate salt tolerance in japonica rice cultivars. STI of TFW under 150 mmol L−1 NaCl treatment showed the highest correlation with salt tolerance during the germination stage.Conclusions: We determined the optimum NaCl concentration (150 mmol L−1) for evaluating salt tolerance in japonica rice at the germination stage. We identified 19 HST, 74 ST, 43 WST, and 4 SS japonica rice cultivars during the germination stage and proposed a mathematical model to evaluate salt tolerance. STI of TFW is a reliable, accurate indicator for evaluating salt tolerance in japonica rice. These findings should greatly facilitate the evaluation of japonica rice cultivars during seed germination and the breeding of salt-tolerant rice cultivars.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2549
Author(s):  
Md Al Samsul Huqe ◽  
Md Sabibul Haque ◽  
Ashaduzzaman Sagar ◽  
Md Nesar Uddin ◽  
Md Alamgir Hossain ◽  
...  

Increasing soil salinity due to global warming severely restricts crop growth and yield. To select and recommend salt-tolerant cultivars, extensive genotypic screening and examination of plants’ morpho-physiological responses to salt stress are required. In this study, 18 prescreened maize hybrid cultivars were examined at the early growth stage under a hydroponic system using multivariate analysis to demonstrate the genotypic and phenotypic variations of the selected cultivars under salt stress. The seedlings of all maize cultivars were evaluated with two salt levels: control (without NaCl) and salt stress (12 dS m−1 simulated with NaCl) for 28 d. A total of 18 morpho-physiological and ion accumulation traits were dissected using multivariate analysis, and salt tolerance index (STI) values of the examined traits were evaluated for grouping of cultivars into salt-tolerant and -sensitive groups. Salt stress significantly declined all measured traits except root–shoot ratio (RSR), while the cultivars responded differently. The cultivars were grouped into three clusters and the cultivars in Cluster-1 such as Prabhat, UniGreen NK41, Bisco 51, UniGreen UB100, Bharati 981 and Star Beej 7Star exhibited salt tolerance to a greater extent, accounting for higher STI in comparison to other cultivars grouped in Cluster-2 and Cluster-3. The high heritability (h2bs, >60%) and genetic advance (GAM, >20%) were recorded in 13 measured traits, indicating considerable genetic variations present in these traits. Therefore, using multivariate analysis based on the measured traits, six hybrid maize cultivars were selected as salt-tolerant and some traits such as Total Fresh Weight (TFW), Total Dry Weight (TDW), Total Na+, Total K+ contents and K+–Na+ Ratio could be effectively used for the selection criteria evaluating salt-tolerant maize genotypes at the early seedling stage.


2019 ◽  
Vol 20 (15) ◽  
pp. 3745 ◽  
Author(s):  
Ting Jin ◽  
Yangyang Sun ◽  
Ranran Zhao ◽  
Zhong Shan ◽  
Junyi Gai ◽  
...  

Peroxidases play prominent roles in antioxidant responses and stress tolerance in plants; however, their functions in soybean tolerance to salt stress remain unclear. Here, we investigated the role of a peroxidase gene from the wild soybean (Glycine soja), GsPRX9, in soybean tolerance to salt stress. GsPRX9 gene expression was induced by salt treatment in the roots of both salt-tolerant and -sensitive soybean varieties, and its relative expression level in the roots of salt-tolerant soybean varieties showed a significantly higher increase than in salt-sensitive varieties after NaCl treatment, suggesting its possible role in soybean response to salt stress. GsPRX9-overexpressing yeast (strains of INVSc1 and G19) grew better than the control under salt and H2O2 stress, and GsPRX9-overexpressing soybean composite plants showed higher shoot fresh weight and leaf relative water content than control plants after NaCl treatment. Moreover, the GsPRX9-overexpressing soybean hairy roots had higher root fresh weight, primary root length, activities of peroxidase and superoxide dismutase, and glutathione level, but lower H2O2 content than those in control roots under salt stress. These findings suggest that the overexpression of the GsPRX9 gene enhanced the salt tolerance and antioxidant response in soybean. This study would provide new insights into the role of peroxidase in plant tolerance to salt stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
A. A. Gaber ◽  
A. F. Abou-Hadid ◽  
Y. A. El- Gabry ◽  
M. H. M. Ebid

In Egyptian sugarcane breeding program, a pot experiment was carried out during 2019 season at Agricultural Research Station, Giza Governorate (latitude 26o 33? N and longitude 31o 12? E), Egypt, to evaluate twenty sugarcane clones, compared with the cultivated variety GT.54-9, under three irrigation water levels IWL (100, 80 and 60% of IWL). The traits FW of the shoot and root, root: shoot ratio, LAI, LAR, Chla, Chlb, Chla: Chlb ratio, carotenoids and proline were assessed. From this study clones 17 had height shoot fresh weight under water stress condition, as same as, clones 1, 18 and 19 had great behavior under water stress. In addition to most of sugarcane tested clones were not affected by increase the degree of water stress from 100 to 80% of IWL. The LAI, Chl.a and Chl.b traits showed the high correlation with shoot fresh weight, whereas, proline had strong relationships with root fresh weight under sugarcane drought stress.


2018 ◽  
Vol 47 (3) ◽  
pp. 405-412
Author(s):  
Mohammad Zabed Hossain ◽  
Md Mehedi Hasan ◽  
Md Abul Kashem

Seven lentil (Lens culinaris Medik.) varieties were grown in pots irrigated with NaCl solution of different concentrations (0, 100, 200 and 300 mM) to assess their salinity tolerance potentials. Data revealed that the highest and the lowest salt tolerance were shown by BARI masur-5 (168.50%) and BARI masur-2 (56.32%), respectively. Cluster analysis based on the salt tolerance indices also showed grouping of the varieties into 4 clusters where BARI masur-5 was found highly salt tolerant, BARI masur-6 was moderately salt tolerant and BARI masur-1 and BARI masur-2 were least tolerant. Although shoot height, fresh weight and water content decreased, root length and root to shoot ratio increased significantly with the increase of salt concentrations in the varieties tested.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Xiaoyan Quan ◽  
Xiaoli Liang ◽  
Hongmei Li ◽  
Chunjuan Xie ◽  
Wenxing He ◽  
...  

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1667 ◽  
Author(s):  
Michael Santangeli ◽  
Concetta Capo ◽  
Simone Beninati ◽  
Fabrizio Pietrini ◽  
Cinzia Forni

Soil salinity is considered one of the most severe abiotic stresses in plants; plant acclimation to salinity could be a tool to improve salt tolerance even in a sensitive genotype. In this work we investigated the physiological mechanisms underneath the response to gradual and prolonged exposure to sodium chloride in cultivars of Brassica napus L. Fifteen days old seedlings of the cultivars Dynastie (salt tolerant) and SY Saveo (salt sensitive) were progressively exposed to increasing soil salinity conditions for 60 days. Salt exposed plants of both cultivars showed reductions of biomass, size and number of leaves. However, after 60 days the relative reduction in biomass was lower in sensitive cultivar as compared to tolerant ones. An increase of chlorophylls content was detected in both cultivars; the values of the quantum efficiency of PSII photochemistry (ΦPSII) and those of the electron transport rate (ETR) indicated that the photochemical activity was only partially reduced by NaCl treatments in both cultivars. Ascorbate peroxidase (APX) activity was higher in treated samples with respect to the controls, indicating its activation following salt exposure, and confirming its involvement in salt stress response. A gradual exposure to salt could elicit different salt stress responses, thus preserving plant vitality and conferring a certain degree of tolerance, even though the genotype was salt sensitive at the seed germination stage. An improvement of salt tolerance in B. napus could be obtained by acclimation to saline conditions.


Sign in / Sign up

Export Citation Format

Share Document