scholarly journals Hydrochemistry Characteristics of Groundwater with the Influence of Spatial Variability and Water Flow in Hetao Irrigation District, China

Author(s):  
Hongying Yuan ◽  
Shuqing Yang ◽  
Bo Wang

Abstract Groundwater is an important resource of water in arid and semi-arid agricultural regions. This study considered the spatial differentiation of geographical features and the concentration of groundwater flow. The upstream of the Hetao Irrigation District Shenwu Irrigation Area (SWIA) and the downstream Wulate Irrigation Area (WLTIA) were selected as the study area, and a total of 85 groundwater samples (42 from SW and 43 from WLTIA) were collected. The aims of the study were to analyze the chemical composition and main control mechanisms of groundwater, and to evaluate the suitability of groundwater irrigation in the study area from the perspective of salt and alkali damage. Geological and environmental factors increase the spatial variability of groundwater chemical characteristics in the Hetao Irrigation District. In addition the groundwater of the study area is weakly alkaline, with the flow of groundwater; the solute content of downstream (WLTIA) is higher than that of upstream (SWIA); SWIA is mainly fresh water (47.62%); and WLTIA is mainly brackish water (65.12%). The main water chemistry types are Cl-Na type, Cl·SO-Ca· Mg type, Na+ and Cl− have obvious advantages in WLTIA, and they are the main contribution indicators of groundwater TDS in the study area. Rock weathering, ions exchange and evaporate crystallization are the main controlling factors for groundwater in the Hetao Irrigation District. Na+ mainly originates from the dissolution of evaporate salt rock and silicate rock, and Ca2+ from the dissolution of gypsum and carbonate. The order of contribution of different rocks is evaporation rock > silicate rock > carbonate rock, and the contribution rates of human activities and atmospheric input are small. The groundwater quality of the upstream SW is better than that of the downstream WLTIA. However, due to the high chemical ion concentration of the groundwater, most of the groundwater cannot be directly used for irrigation, which may cause salt and alkali damage. Therefore, when using groundwater irrigation, either drip irrigation or irrigation water aeration pretreatment can be used to avoid damages such as reduced soil permeability and compaction.

2021 ◽  
Author(s):  
Qi Zhang ◽  
Qingfeng Miao ◽  
Junping Lu ◽  
Linfeng Yuan ◽  
Guoxia Pei

Abstract To explore the characteristics of heavy metal pollution in farmland soils in the Jiefangzha Irrigation Area of the Hetao Irrigation District, Inner Mongolia, 60 samples of the surface soil (0–20 cm) of the irrigation area were collected to detect and analyze the content of the typical heavy metal elements Cu, As, and Pb in the soil. The methods utilized included the single factor index method, the Nemerow index method, the geological accumulation index method, and the potential ecological hazard index method to evaluate their pollution and ecological risks, and these were combined with geostatistical methods using GIS technology to quantitatively analyze their spatial distribution characteristics. The results showed that the average content of Cu, As, and Pb did not exceed the background values in the Hetao Irrigation Area, and the contents showed a moderate variation, with the order of variation as As>Cu>Pb. The multivariate statistical analysis results showed that the three elements, Cu, As, and Pb, had similar sources, being primarily the use of agrochemicals, such as fertilizers and pesticides. The semi-variance function model fitting results showed that Pb was a spherical model, and Cu and As were Gaussian models. The Kriging interpolation showed that the contents of As, Pb, and Cu, in general, showed a trend that was higher in the northwest and lower in the southeast, with a change of gradient increasing from the southeast to the northwest. Human activities were the primary factors that were causing the distribution difference.


2013 ◽  
Vol 38 (5) ◽  
pp. 909-913 ◽  
Author(s):  
Wen-Jie TONG ◽  
Qian LIU ◽  
Fu CHEN ◽  
Xin-Ya WEN ◽  
Zhong-Hao LI ◽  
...  

2019 ◽  
Vol 23 (7) ◽  
pp. 3097-3115 ◽  
Author(s):  
Zhongyi Liu ◽  
Xingwang Wang ◽  
Zailin Huo ◽  
Tammo Siert Steenhuis

Abstract. Rapid population growth is increasing pressure on the world water resources. Agriculture will require crops to be grown with less water. This is especially the case for the closed Yellow River basin, necessitating a better understanding of the fate of irrigation water in the soil. In this paper, we report on a field experiment and develop a physically based model for the shallow groundwater in the Hetao irrigation district in Inner Mongolia, in the arid middle reaches of the Yellow River. Unlike other approaches, this model recognizes that field capacity is reached when the matric potential is equal to the height above the groundwater table and not by a limiting soil conductivity. The field experiment was carried out in 2016 and 2017. Daily moisture contents at five depths in the top 90 cm and groundwater table depths were measured in two fields with a corn crop. The data collected were used for model calibration and validation. The calibration and validation results show that the model-simulated soil moisture and groundwater depth fitted well. The model can be used in areas with shallow groundwater to optimize irrigation water use and minimize tailwater losses.


2019 ◽  
Vol 11 (18) ◽  
pp. 5022 ◽  
Author(s):  
Junju Zhou ◽  
Juan Xiang ◽  
Lanying Wang ◽  
Guoshuang Zhong ◽  
Guofeng Zhu ◽  
...  

Groundwater chemistry has an important impact on the vegetation distribution in inland areas. An in-depth understanding of the impact of groundwater chemistry on vegetation can help in developing an effective management strategy to protect the inland ecosystem. The aim of this study was to identify the influence of groundwater chemicals on species diversity and the distribution characteristics of wetland plants at multiple scales based on the groundwater chemical data from 15 sampling points and the distribution data of 13 plants in the Sugan Lake Wetland in 2016. The results show that the groundwater of the Sugan Lake Wetland is weakly alkaline, with high salinity and hardness; the water chemical type is Na-SO4-Cl; the concentration of the major water chemical parameters is significantly different and is the highest in the northwest, followed by the southwest, and is the lowest in the east; with an increase in the groundwater depth, the concentration of major water chemical parameters first showed an increasing trend followed by a decreasing trend; Artemisia frigida Willd, Poa annua L. and Triglochin maritimum L. were adapted to the environment with a higher ion concentration of the groundwater, and their salt resistance was the strongest; Blysmus sinocompressus and Polygonum are more adapted to the environment with lower salinity and hardness of groundwater; Thermopsis lanceolata has stronger adaptability to the ion concentration, salinity, and hardness of groundwater; other plants are adapted to environments where the ion concentration, salinity, and hardness of the groundwater are moderate.


2021 ◽  
Author(s):  
Xinjian Guan ◽  
Qiongying Du ◽  
Wenge Zhang ◽  
Baoyong Wang

Abstract Establishing and perfecting the water rights system is an important way to alleviate the shortage of water resources and realize the optimal allocation of water resources. Agriculture is an important user of water in various water-consumption industries, the confirmation of water rights in irrigation districts to farmers is the inevitable requirement for implementing fine irrigation in agricultural production. In this paper, a double-level water rights allocation model of national canals – farmer households in irrigation district is established. It takes into account the current water consumption of the canal system, the future water-saving potential and the constraint of total amount control at the canal level. It takes into account the asymmetric information of farmer households’ population and irrigation area at the farmer household level. Furthermore, the Gini coefficient method is used to construct the water rights allocation model among farmer households based on the principle of fairness. Finally, Wulanbuhe Irrigation Area in the Hetao Irrigation Area of Inner Mongolia is taken as an example. The results show that the allocated water rights of the national canals in the irrigation district are less than the current because of water-saving measures and water rights of farmer household get compensation or cut respectively. The research has fully tapped the water-saving potential of irrigation districts, refined the distribution of water rights of farmers and can provide a scientific basis for the development of water rights allocation in irrigation districts and water rights transactions between farmers.


Sign in / Sign up

Export Citation Format

Share Document