scholarly journals Xylanase Production By Thermobacillus Xylanilyticus is Impaired By Population Diversification But Can Be Mitigated Based On the Management of Cheating Behavior

Author(s):  
Romain Bouchat ◽  
Frédéric Vélard ◽  
Sandrine Audonnet ◽  
Damien Rioult ◽  
Frank Delvigne ◽  
...  

Abstract Background: The microbial production of hemicellulasic cocktails is still a challenge for the sector of biorefineries and agro-waste valorization. In this work, the production of hemicellulolytic enzymes by Thermobacillus xylanilyticus has been considered. This microorganism is of interest since it is able to produce an original set of thermostable hemicellulolytic enzymes, and notably a xylanase GH11, Tx-xyn11. However, cell-to-cell heterogeneities impairs the production capability of the whole microbial population.Results: Sequential cultivations of the strain on xylan as a carbon source has been considered in order to highlight and better understand this cell-to-cell heterogeneity. Successive cultivations pointed out a fast decrease of xylanase activity (loss of ~75%) after 23.5 generations. Accordingly, the expression of the Tx-xyn11 gene decreased drastically and followed the same trend as the xylanase activity. Flow cytometry analyses pointed out that two subpopulations, differing at the level of their light scattering properties, were potentially involved in this progressive loss of enzymatic activities. Interestingly, upon successive cultivations on xylan, the subpopulation exhibiting low forward scatter (FSC) signal. Additionally, the evolution of the ratio between the two subpopulations was correlated to the decrease in xylanase activity. Cell sorting and direct observation of the sorted subpopulations revealed that the low-FSC subpopulation was not sporulating, whereas the high-FSC subpopulation contained cells at the onset of the sporulation stage. Serial cultivations on glucose, followed by the addition of a xylan pulse led to a ~1.5-fold to ~15-fold improvement of xylanase, depending on the moment for pulse addition, , suggesting that alternating cultivation conditions could lead to an efficient population management strategy for the production of xylanase. Conclusions: Taken altogether, the data from this study point out that a cheating behaviour is responsible for the progressive reduction in xylanase activity during serial cultivations of T. xylanilyticus. Alternating cultivation condition between glucose and xylan could be used as an efficient strategy for promoting population stability and higher enzymatic productivity from this bacterium.

Author(s):  
D. T. Ha ◽  
A. V. Kanarskiy ◽  
Z. A. Kanarskaya ◽  
A. V. Scherbakov ◽  
E. N. Scherbakova ◽  
...  

Xylanase is an enzyme that hydrolyses β-1,4 bonds in plant xylan. This enzyme is applied in the bioconversion of agro-industrial waste for xylooligosaccharide hydrolysate production to improve digestibility and nutrition value of animal feed, food processing, the utilisation and faster decomposition of crop debris in soil, as well as in cellulose bleaching and other industries. The current trend focuses on using renewable resources, such as agricultural waste, as substitutes for expensive purified xylan in producer screening and xylanase synthesis. This work aimed to determine the impact of Paenibacillus mucilaginosus cultivation conditions on the xylanase production yield. Rice bran ferment lysate along with birch and beech timber xylans were used as a carbon source. Temperature, medium pH, pH correction factors, inoculant incubation time, carbon and nitrogen sources and concentrations were the studied criteria of xylanase biosynthesis and growth in bacteria P. ucilaginosus strain 560. We show that the xylanase biosynthesis and cultivation in P. mucilaginosus strain 560 are more practical and cost-effective with the use of a rice bran ferment lysate-based nutrient medium. Inductors contained in the rice bran ferment lysate improve the xylanase biosynthesis. Calcium ions also facilitate biosynthesis in the studied strain. Cultivation recommendations are: carbon source concentration in medium 0.5% of total reducing substances content; 0.2% carbamide as optimal nitrogen source; calcium hydroxide as an agent for medium pH correction to 6.0±0.2; cultivation temperature 30±1 °С. Under the specified conditions, cultivation of P. mucilaginosus does not require inoculate preprocessing, and a maximal xylanase activity in stationary culture reaches 20 U/mL.


Author(s):  
Remy J. H. Martens ◽  
Arjan J. van Adrichem ◽  
Nadine J. A. Mattheij ◽  
Calvin G. Brouwer ◽  
Daan J. L. van Twist ◽  
...  

AbstractObjectivesCOVID-19 is an ongoing global pandemic. There is an urgent need for identification and understanding of clinical and laboratory parameters related to progression towards a severe and fatal form of this illness, often preceded by a so-called cytokine-storm syndrome (CSS). Therefore, we explored the hemocytometric characteristics of COVID-19 patients in relation to the deteriorating clinical condition CSS, using the Sysmex XN-10 hematology analyzer.MethodsFrom March 1st till May 16th, 2020, all patients admitted to our hospital with respiratory complaints and suspected for COVID-19 were included (n=1,140 of whom n=533 COVID-19 positive). The hemocytometric parameters of immunocompetent cells in peripheral blood (neutrophils [NE], lymphocytes [LY] and monocytes [MO]) obtained upon admission to the emergency department (ED) of COVID-19 positive patients were compared with those of the COVID-19 negative ones. Moreover, patients with CSS (n=169) were compared with COVID-19 positive patients without CSS, as well as with COVID-19 negative ones.ResultsIn addition to a significant reduction in leukocytes, thrombocytes and absolute neutrophils, it appeared that lymphocytes-forward scatter (LY-FSC), and reactive lymphocytes (RE-LYMPHO)/leukocytes were higher in COVID-19-positive than negative patients. At the moment of presentation, COVID-19 positive patients with CSS had different neutrophils-side fluorescence (NE-SFL), neutrophils-forward scatter (NE-FSC), LY-FSC, RE-LYMPHO/lymphocytes, antibody-synthesizing (AS)-LYMPHOs, high fluorescence lymphocytes (HFLC), MO-SSC, MO-SFL, and Reactive (RE)-MONOs. Finally, absolute eosinophils, basophils, lymphocytes, monocytes and MO-FSC were lower in patients with CSS.ConclusionsHemocytometric parameters indicative of changes in immunocompetent peripheral blood cells and measured at admission to the ED were associated with COVID-19 with and without CSS.


2021 ◽  
Vol 22 (8) ◽  
pp. 4214
Author(s):  
Gautam Anand ◽  
Meirav Leibman-Markus ◽  
Dorin Elkabetz ◽  
Maya Bar

Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)–Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.


2017 ◽  
Vol 30 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Maria Chiara Paccanaro ◽  
Luca Sella ◽  
Carla Castiglioni ◽  
Francesca Giacomello ◽  
Ana Lilia Martínez-Rocha ◽  
...  

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Luana Cunha ◽  
Raquel Martarello ◽  
Paula Monteiro de Souza ◽  
Marcela Medeiros de Freitas ◽  
Kleber Vanio Gomes Barros ◽  
...  

Enzymatic hydrolysis is an important but expensive step in the process to obtain enzyme derived products. Thus, the production of efficient enzymes is of great interest for this biotechnological application. The production of xylanase by Aspergillus foetidus in soybean residues was optimized using 2×23 factorial designs. The experimental data was fitted into a polynomial model for xylanase activity. Statistical analyses of the results showed that variables pH and the interaction of pH and temperature had influenced the production of xylanase, with the best xylanase production level (13.98 U/mL) occurring at fermentation for 168 hours, pH 7.0, 28°C, and 120 rpm.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Guo-Qiang Guan ◽  
Peng-Xiang Zhao ◽  
Jin Zhao ◽  
Mei-Juan Wang ◽  
Shu-Hao Huo ◽  
...  

A new fungusCladosporium oxysporumGQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence.C. oxysporumproduced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+improvedC. oxysporumxylanase production.Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+enhanced the xylanase activity by 2% while Cu2+had the highest inhibition ratio of 57.9%. Furthermore,C. oxysporumxylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated thatCladosporium oxysporumGQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.


2015 ◽  
Vol 737 ◽  
pp. 381-387 ◽  
Author(s):  
Mei Zhen Gong ◽  
Rui Huang ◽  
Jin Ling Guo ◽  
Hua Shun Yu ◽  
Juan Yao ◽  
...  

Xylanase has good application prospect in the paper and pulp industry, feed industry, health care and bioenergy industry,etc.The xylanase is one of the key enzyme in the utilization of biomass. Fermentation kinetics equation was constructed based on Logistic and Luedeking-Piret equation. The results showed that the dissolved oxygen was related to the stirring speed, raising to 45% naturally after the log growth phase (about 30h) on the base of the optimum medium process of xylanase production by Trichoderma reesei. Fed-batch fermentation strategy was designed based on fermentation kinetics equations. The xylanase activity was further enhanced to 2406.175U/mL, enzyme activity per unit protein mass was 6573U/mg.


2012 ◽  
Vol 19 ◽  
pp. 7-14
Author(s):  
SCD Sharma ◽  
MS Shovon ◽  
AKM Asaduzzaman ◽  
MG Sarowar Jahan ◽  
T Yeasmin ◽  
...  

Context: To analyze the nutritional and physicochemical parameters for the production of alkali-thermostable and cellulase free xylanase from bacteria. Objectives: The aim of this study was to isolation and identification and of alkali-thermostable and cellulase free xylanase producing bacteria from soil as well as optimization of process parameters for xylanase production. Materials and Methods: The bacterium Bacillus sp. was isolated from soil by serial dilution technique on xylan agar medium and identified by morphological and biochemical studies. The production of xylanase was carried out on xylan broth medium and xylanase activity was assayed by dinitrosalicylic acid (DNS) method. The effect of cultural parameters on the production of xylanase was determined by measuring the activity of xylanase. The effect of temperature and pH on the activity of partially purified xylanase as well as substrate specificity of xylanase were examined. Results: The maximum xylanase production (4000 U/L) by a Bacillus sp. was attained when the medium containing 0.5% wheat bran xylan and peptone at pH 8.0 and 50-55°C within 48-60 h. The partially purified xylanase was optimally active at pH 9.0 and 55°C. The xylanase showed high substrate activity towards wheat bran xylan but no activity towards cellulose, carboxymethyl cellulose and starch. Thus the enzyme was alkali-thermostable and cellulase free xylanase. Conclusion: The results obtained in this study suggest that the Bacillus sp. used is highly potential and useful for the production of cellulase free xylanase. DOI: http://dx.doi.org/10.3329/jbs.v19i0.12994 J. bio-sci. 19: 7-14, 2011


2018 ◽  
Vol 19 (2) ◽  
pp. 117
Author(s):  
Esti Utarti ◽  
S. Siswanto

Hemicellulose is one of lignocellulose waste component, so that xylanase is one of importance enzyme of lignocellulose waste biodegradation. Molds as main decomposer lignosellulose waste has enzyme activities higher than yeast and bacteria. The aim of the research is to find mold that have xylanolitic activity using lignocellulose waste as media production. The research consist of isolations and screening mols from coastal-field of watu Ulo Jember, xylanase production using lignocellulose waste and idntification of mold which has the highes xylanase activity. A total of 66 molds isolated from rice straw in coastal-field of Watu Ulo Jember. There were screened for their xylanase activity. In semiquantitatively screen on Oat Spelt Xylan plate, the result showed that 62 have xilanolytic activities. Based on clearing zone production, isolates ESW A1 (3.2), ESW A5 (3.1), ESW C 16 (3.26), ESW D4 (3.0) and ESW D15 (3.21) have xilanase activity index higher than others. Furthermore, quantitative analysis using wheat bran, rice straw and baggase in basic salt Mandel’s modification media showed that xylanase activity of isolate ESW D4 was higher on rice straw 3% as substrate production with activity 2.66 U/mL. Isolate ESW D4 identified as Aspergillus foetidus so that called as Aspergillus foetidus ESW D4. Keywords: rice straw, coastal-field, Aspergillus foetidus ESW-D


2015 ◽  
Author(s):  
◽  
Venessa Thorulsley

Fermentation processes are vital for the production of numerous bioproducts. Fermentation being the mass culture of micro – organisms for the production of some desired product, is an extensive field, with immense prospects for study and improvement. Enzyme production is of significance as these proteins are biological catalysts, finding niches in numerous industries, xylanase for example is utilized in the pulp and paper, animal feed, biofuel and food production processes. During enzyme production, a critical step is biomass separation, whereby the valuable product, the enzyme, is removed from the broth or micro – biological culture before it is denatured. This is typically achieved via centrifugation. The aim of this study was to develop and evaluate a submerged membrane fermenter system with the specific outcome of increasing the rate of production of xylanase, from the thermophilic fungal species Thermomyces lanuginous DSM 5826. Preliminary shake flask experiments were performed to determine the optimal production conditions, followed by partial characterization of the enzyme. A bioreactor was then fabricated to include a flat sheet membrane module, with outlets for permeate and broth withdrawal and inlets for feed and sterile air input. Experiments were conducted to determine the optimal dilution rate for maximum volumetric productivity. Results from the shake flask experiments indicated that the best conditions for xylanase production, yielding xylanase activity of 5118.60 ± 42.76 U.mL-1 was using nutrient medium containing beechwood xylan (1.5 % w/v), yeast extract (1.5 % w/v), potassium dihydrogen phosphate (0.5 % w/v), adjusted to a pH of 6.5 and inoculated with 1.0 mL of spore solution, rotating in a shaking incubator set to 150 rpm at 50 °C. Apart from analysis of the effect of the carbon source on xylanase activity, coarse corn cobs were used in the shake flask experiments as a cost saving initiative. The pH optima was determined to be 6.5 while the temperature optima of the enzyme was 70 °C. SDS PAGE analysis revealed that the molecular weight of the enzyme was between 25 and 35 kDa and qualitative analysis via a zymogram revealed clear zones of hydrolysis on a xylan infused agarose gel. During short run membrane fermenter experiments the percentage increase in enzyme activity between the batch operation (610.58 ± 34.54 U.mL-1) and semi – continuous operation (981.73 ± 55.54 U.mL-1) with beechwood xylan nutrient replenishment was 60.78 %. The maximum volumetric productivity achieved with beechwood supplementation after 192 hours in semi – continuous operation (5.32 ± 0.30 U.mL-1.hr-1) was 2.1 times greater than that of batch operation (2.54 ± 0.14 U.mL-1.hr-1) which equates to an increase of 110.28 % in productivity measured at its peak. The increase in total activity between batch (610 576.92 U) and beechwood xylan medium supplemented semi – continuous mode (1 184 937.50 U) resulted in a 94.07 % increase. During long run experimental periods, the increase in production of xylanase between the batch (873.26 ± 61.78 U.mL-1) and the xylan medium membrane system (1522.41 ± 107.65 U.mL-1) was determined to be 74.34 % while an overall average increase in productivity between the batch and xylan fed membrane system was 43.25%. The total enzyme activity with in membrane mode with beechwood xylan nutrient medium feed was 160 % greater than the batch process offering a 2.6 – fold increase. Experiments where de – ionized water was alternated with beechwood xylan nutrient medium had no significant impact on the productivity or enzyme activity. The optimal dilution rate for maximum volumetric productivity as determined to be 0.0033 hr-1. The results are indicative of the potential viability of such a design, yielding the desired outcome of a membrane integrated system to significantly increase the production of enzymes during fermentation.


Sign in / Sign up

Export Citation Format

Share Document