scholarly journals Graphene Oxide-Lignin/Silk Fibroin/ZnO Nanobiocomposite: A Novel Bioactive Scaffold With Antibacterial Activity

Author(s):  
Reza Eivazzadeh-Keihan ◽  
Ensiye Zare-Bakheir ◽  
Hooman Aghamirza Moghim Aliabadi ◽  
Mostafa Ghafori Gorab ◽  
Hossein Ghafuri ◽  
...  

Abstract In this study, a novel nanobiocomposite was synthesized using graphene oxide, lignin, silk fibroin and ZnO and used in biological fields. To synthesize this structure, after preparing graphene oxide by the Hummer method, lignin, silk fibroin, and ZnO nanoparticles (NPs) were added to it, respectively. Also, ZnO NPs with a particle size of about 18 nm to 33 nm was synthesized via Camellia sinensis extract by green methodology. The synthesized structure was examined as anti-biofilm agent and it was observed that the Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite has a significant ability to prevent the formation of P. aeruginosa biofilm. In addition, due to the importance of the possibility of using this structure in biological environments, its toxicity and blood compatibility were also evaluated. According to the obtained results from MTT assay, the viability percentages of Hu02 cells treated with Graphene oxide-lignin/silk fibroin/ZnO nanobiocomposite after 24, 48, and 72 h of incubation were 89.96%, 89.32%, and 91.28%. On the other hand, the hemolysis percentage of the synthesized structure after 24 h and 72 h of extraction was 9.5% and 11.76% respectively. As a result, the synthesized structure is hemocompatible and had no toxic effects on Hu02 cells.

2020 ◽  
Vol 248 ◽  
pp. 116802 ◽  
Author(s):  
Reza Eivazzadeh-Keihan ◽  
Fateme Radinekiyan ◽  
Hamid Madanchi ◽  
Hooman Aghamirza Moghim Aliabadi ◽  
Ali Maleki

2015 ◽  
Vol 1782 ◽  
pp. 1-8
Author(s):  
Ning-Qin Deng ◽  
He Tian ◽  
Qing-Tang Xue ◽  
Zhe Wang ◽  
Hai-Ming Zhao ◽  
...  

ABSTRACTNanogenerators (NGs) have great potential to solve the problems of energy depletion and environmental pollution. Here, two types of flexible nanogenerators (FNGs) based on graphene oxide (GO) and multiwall carbon nanotubes (MW-CNTs) are presented. The peak output voltage and current of GO based FNG reached up to 2 V and 30 nA, respectively, under 15 N force at 1 Hz. Moreover, the output voltage could be improved to 34.4 V when the frequency was increased to 10 Hz. It was also found the output voltage increased from 0.1 V to 2.0 V using a released GO structure. The other FNG was made by MW-CNTs mixed with ZnO nanoparticles (NPs). Its output voltage and power reached up to 7.5 V and 18.75 mW, respectively, which is much larger than that of bare ZnO based FNG. Furthermore, a peak voltage of 30 V could be gained by stamping one’s foot on the FNG. Finally, a modified NG was fabricated using four springs and two flexible layers. As a result, the voltage and power reached up to 9 V and 27mW, respectively. These works may bring out broad applications in energy harvesting.


Author(s):  
Saira Sehar ◽  
Amiza Amiza ◽  
I. H Khan

Nanotechnology advancement leads to development of antimicrobial agents like ZnO nanoparticles. These nanoparticle have their main applications in food packaging. when these nanoparticles incorporate into the food surface, it will kill all bacterias residing on the surface and food become free of bacteria. In this way, food can be stored for a long time because its shelf life is improved. Antimicrobial activity of ZnO nanoparticles can be improved by increasing surface area, reducing particle size and large concentration of ZnO –NPS. Antimicrobial activity increases by increasing intensity of UV light. As UV light fall on ZnO nanoparticles, it increases ZnO surface area and hence anrtimicrobial activity will be increased. Exact mechanism of Antimicrobial activity is still unknown but some processes have been presented.


2019 ◽  
Vol 20 (21) ◽  
pp. 5394 ◽  
Author(s):  
Yi-Huang Hsueh ◽  
Chien-Te Hsieh ◽  
Shu-Ting Chiu ◽  
Ping-Han Tsai ◽  
Chia-Ying Liu ◽  
...  

Graphene oxide (GO) composites with various metal nanoparticles (NPs) are attracting increasing interest owing to their broad scope in biomedical applications. Here, microwave-assisted chemical reduction was used to deposit nano-silver and zinc oxide NPs (Ag and ZnO NPs) on the surface of reduced GO (rGO) at the following weight percentages: 5.34% Ag/rGO, 7.49% Ag/rGO, 6.85% ZnO/rGO, 16.45% ZnO/rGO, 3.47/34.91% Ag/ZnO/rGO, and 7.08/15.28% Ag/ZnO/rGO. These materials were tested for antibacterial activity, and 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO exhibited better antibacterial activity than the other tested materials against the gram-negative bacterium Escherichia coli K12. At 1000 ppm, both these Ag/ZnO/rGO composites had better killing properties against both E. coli K12 and the gram-positive bacterium Staphylococcus aureus SA113 than Ag/rGO and ZnO/rGO did. RedoxSensor flow cytometry showed that 3.47/34.91% Ag/ZnO/rGO and 7.08/15.28% Ag/ZnO/rGO decreased reductase activity and affected membrane integrity in the bacteria. At 100 ppm, these two composites affected membrane integrity more in E. coli, while 7.08/15.28% Ag/ZnO/rGO considerably decreased reductase activity in S. aureus. Thus, the 3.47/34.91% and 7.08%/15.28% Ag/ZnO/rGO nanocomposites can be applied not only as antibacterial agents but also in a variety of biomedical materials such as sensors, photothermal therapy, drug delivery, and catalysis, in the future.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Gebretinsae Yeabyo Nigussie ◽  
Gebrekidan Mebrahtu Tesfamariam ◽  
Berhanu Menasbo Tegegne ◽  
Yemane Araya Weldemichel ◽  
Tesfakiros Woldu Gebreab ◽  
...  

We report in this paper antibacterial activity of Ag-doped TiO2 and Ag-doped ZnO nanoparticles (NPs) under visible light irradiation synthesized by using a sol-gel method. Structural, morphological, and basic optical properties of these samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectrum, and UV-Vis reflectance. Room temperature X-ray diffraction analysis revealed that Ag-doped TiO2 has both rutile and anatase phases, but TiO2 NPs only have the anatase phase. In both ZnO and Ag-doped ZnO NPs, the hexagonal wurtzite structure was observed. The morphologies of TiO2 and ZnO were influenced by doping with Ag, as shown from the SEM images. EDX confirms that the samples are composed of Zn, Ti, Ag, and O elements. UV-Vis reflectance results show decreased band gap energy of Ag-doped TiO2 and Ag-doped ZnO NPs in comparison to that of TiO2 and ZnO. Pathogenic bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, were used to assess the antibacterial activity of the synthesized materials. The reduction in the viability of all the three bacteria to zero using Ag-doped ZnO occurred at 60 μg/mL of culture, while Ag-doped TiO2 showed zero viability at 80 μg/mL. Doping of Ag on ZnO and TiO2 plays a vital role in the increased antibacterial activity performance.


RSC Advances ◽  
2017 ◽  
Vol 7 (58) ◽  
pp. 36361-36373 ◽  
Author(s):  
Mohd. Ahmar Rauf ◽  
Mohammad Owais ◽  
Ravikant Rajpoot ◽  
Faraz Ahmad ◽  
Nazoora Khan ◽  
...  

Biomimetic synthesis of ZnO–NPs and their topical application on S. aureus induced skin infection leads to reduction in infection in mice model.


2020 ◽  
Vol 21 (supplement 1) ◽  
Author(s):  
Ali Hassan Mahmoud ◽  
Zainab Muhammed Nsaif

The current study involved collecting 225 samples of different age groups and from different clinical sources (burns and wounds). Selective and differential media, Microscopic Examination, Biochemical test, IMVIC tests, and Vitek 2 system were used to identify the bacterial species. The results showed that the bacterial isolates were distributed on Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis. All isolates were multidrug-resistant to 12 antibiotics from different classes and according to the susceptibility test, isolate distinction in 2 groups (75 %) of MDR isolates were resistant to (5-9) antibiotics, while (25 %) were susceptible. Zinc Oxide nanoparticles synthesized was done by a green method with Zinc acetate dehydrate as a precursor and aqueous extract of Camellia sinensisas a reducing agent, color-changing to pale-white was an indication of the formation of ZnONPs. The average size and shape of the nanoparticles were detected by using Atomic Force Microscopy (AFM) which was 40 nm with a spherical shape. Scanning Electron Microscopy (SEM) showed the ZnO NPs have spherical, radial, and cylindrical structures. The wavelength range was measured by Ultraviolet-visible spectroscopy (UV-Vis) for monitoring the formation of the nanoparticles, which showed a sharp peak at 325 nm. The average crystallite size of ZnONPs was estimated using Debye Scherrer’s formula were 20-40nm by using X-ray Diffraction (XRD). Fourier-transform infrared spectroscopy (FT-IR) spectra have been used for ZnONPs to detect the functional groups found in the synthesis process via green tea extract. Keyword: ZnO NPs. Biosynthesis, Camellia sinensis, Green tea, Antibacterial activity


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5001
Author(s):  
Mohamed A. Hassaan ◽  
Antonio Pantaleo ◽  
Francesco Santoro ◽  
Marwa R. Elkatory ◽  
Giuseppe De Mastro ◽  
...  

The aim of this study was to analyze the effect of ZnO nanoparticles (ZnO NPs) on the biogas production from mechanically treated barley straw and to perform a techno-economic analysis based on the costs assessment and on the results of biogas production. The structural changes of mechanically pretreated barley straw were observed using FTIR, XRD, TGA, and SEM. Additionally, both green ZnO NPs prepared from red alga (Antithamnion plumula) extract and chemically prepared ZnO NPs were characterized by FTIR, XRD, SEM, and TEM, surface area, and EDX. The results revealed that the biogas production was slightly improved by 14.9 and 13.2% when the barley straw of 0.4 mm was mechanically pretreated with 10 mg/L of both green and chemical ZnO NPs and produced 390.5 mL biogas/g VS and 385 mL biogas/g VS, respectively. On the other hand, the higher concentrations of ZnO NPs equal to 20 mg/L had an inhibitory effect on biogas production and decreased the biogas yield to 173 mL biogas/g VS, which was less than the half of previous values. It was also clear that the mechanically treated barley straw of 0.4 mm size presented a higher biogas yield of about 340 mL/g VS, in comparison to 279 mL biogas/g VS of untreated biomass. The kinetic study showed that the first order, modified Gompertz and logistic function models had the best fit with the experimental data. The results showed that the nanoparticles (NPs) of the mechanically treated barely straw are a suitable source of biomass for biogas production, and its yields are higher than the untreated barley straw. The results of the cost-benefit analysis showed that the average levelized cost of energy (LCOE), adopting the best treatments (0.4 mm + 10 mg/L ZnO), is 0.21 €/kWh, which is not competitive with the other renewable energy systems in the Egyptian energy market.


Sign in / Sign up

Export Citation Format

Share Document