Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging

Author(s):  
Saira Sehar ◽  
Amiza Amiza ◽  
I. H Khan

Nanotechnology advancement leads to development of antimicrobial agents like ZnO nanoparticles. These nanoparticle have their main applications in food packaging. when these nanoparticles incorporate into the food surface, it will kill all bacterias residing on the surface and food become free of bacteria. In this way, food can be stored for a long time because its shelf life is improved. Antimicrobial activity of ZnO nanoparticles can be improved by increasing surface area, reducing particle size and large concentration of ZnO –NPS. Antimicrobial activity increases by increasing intensity of UV light. As UV light fall on ZnO nanoparticles, it increases ZnO surface area and hence anrtimicrobial activity will be increased. Exact mechanism of Antimicrobial activity is still unknown but some processes have been presented.

Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1117
Author(s):  
Shubham Sharma ◽  
Sandra Barkauskaite ◽  
Brendan Duffy ◽  
Amit K. Jaiswal ◽  
Swarna Jaiswal

Bioactive packaging contains natural antimicrobial agents, which inhibit the growth of microorganisms and increase the food shelf life. Solvent casting method was used to prepare the Poly (lactide)-Poly (butylene adipate-co-terephthalate) (PLA-PBAT) film incorporated with the thyme oil and clove oil in various concentrations (1 wt%, 5 wt% and 10 wt%). The clove oil composite films depicted less green and more yellow as compared to thyme oil composite films. Clove oil composite film has shown an 80% increase in the UV blocking efficiency. The tensile strength (TS) of thyme oil and clove oil composite film decreases from 1.35 MPs (control film) to 0.96 MPa and 0.79, respectively. A complete killing of S. aureus that is a reduction from 6.5 log CFU/mL to 0 log CFU/mL was observed on the 10 wt% clove oil incorporated composite film. Clove oil and thyme oil composite film had inhibited E. coli biofilm by 93.43% and 82.30%, respectively. Clove oil composite film had exhibited UV blocking properties, strong antimicrobial activity and has high potential to be used as an active food packaging.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. K. Singh ◽  
Umesh T. Nakate

TiO2 and ZnO nanoparticles (NPs) were synthesized using microwave-assisted method. Synthesized NPs were characterized for their structure, morphology, and elemental composition using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The crystallite size of synthesized NPs of TiO2 and ZnO was about 12.3 and 18.7 nm as obtained from the Scherrer formula from the most intense XRD peak. The synthesized NPs have been found to be in stoichiometric ratio having anatase and hexagonal wurtzite structure for TiO2 and ZnO, respectively, and are spherical in shape. Surface area of TiO2 and ZnO NPs was found to be about 43.52 m2/g and 7.7 m2/g. Photocatalytic (PC) properties of synthesized NPs were studied for malachite green (MG) dye under UV light. TiO2 NPs were found to be highly photocatalytically active among the two, having efficiency and apparent photodegradation rate of 49.35% and , respectively.


2020 ◽  
Vol 11 ◽  
pp. 1450-1469
Author(s):  
Matías Guerrero Correa ◽  
Fernanda B Martínez ◽  
Cristian Patiño Vidal ◽  
Camilo Streitt ◽  
Juan Escrig ◽  
...  

The investigation of novel nanoparticles with antimicrobial activity has grown in recent years due to the increased incidence of nosocomial infections occurring during hospitalization and food poisoning derived from foodborne pathogens. Antimicrobial agents are necessary in various fields in which biological contamination occurs. For example, in food packaging they are used to control food contamination by microbes, in the medical field the microbial agents are important for reducing the risk of contamination in invasive and routine interventions, and in the textile industry, they can limit the growth of microorganisms due to sweat. The combination of nanotechnology with materials that have an intrinsic antimicrobial activity can result in the development of novel antimicrobial substances. Specifically, metal-based nanoparticles have attracted much interest due to their broad effectiveness against pathogenic microorganisms due to their high surface area and high reactivity. The aim of this review was to explore the state-of-the-art in metal-based nanoparticles, focusing on their synthesis methods, types, and their antimicrobial action. Different techniques used to synthesize metal-based nanoparticles were discussed, including chemical and physical methods and “green synthesis” methods that are free of chemical agents. Although the most studied nanoparticles with antimicrobial properties are metallic or metal-oxide nanoparticles, other types of nanoparticles, such as superparamagnetic iron-oxide nanoparticles and silica-releasing systems also exhibit antimicrobial properties. Finally, since the quantification and understanding of the antimicrobial action of metal-based nanoparticles are key topics, several methods for evaluating in vitro antimicrobial activity and the most common antimicrobial mechanisms (e.g., cell damage and changes in the expression of metabolic genes) were discussed in this review.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1260 ◽  
Author(s):  
Shuzhen Ni ◽  
Hui Zhang ◽  
Hongqi Dai ◽  
Huining Xiao

Herein, we fabricated a starch-based flexible coating for food packaging papers with excellent hydrophobicity and antimicrobial properties. FTIR (Fourier transform infrared) and XRD (X-ray diffraction) spectra revealed the homogeneous dispersion of the ZnO nanoparticles (NPs) in the composite film within 5% ZnO NP dosage. SEM (scanning electron microscope) and AFM (atomic force microscope) micrographs confirmed the increased roughness on the composite film with the increased dosages of ZnO NPs. Hydrophobic characteristics showed that dramatic enhancement was obtained in the values and stabilities of DCAs (dynamic contact angles) in the resultant film and coated paper. TG (thermogravimetry) results demonstrated the increased thermal stabilities of the composite films. Significantly, a decreased water vapor transmission rate was observed in the coated paper. When 20% guanidine-based starch and 2% CMC (carboxy methyl cellulose) was added, a flexible coating with excellent antimicrobial activity towards Escherichia coli can be obtained. Furthermore, the migration of ZnO NPs into the food simulants was well below the overall migration legislative limit. The resultant starch-based flexible composite film and coated paper established an effective approach to develop a green-based material for food packaging applications.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Traian Popescu ◽  
Christien Oktaviani Matei ◽  
Ioana Dorina Vlaicu ◽  
Ioan Tivig ◽  
Andrei Cristian Kuncser ◽  
...  

Abstract The present study concerns the in vitro oxidative stress responses of non-malignant murine cells exposed to surfactant-tailored ZnO nanoparticles (NPs) with distinct morphologies and different levels of manganese doping. Two series of Mn-doped ZnO NPs were obtained by coprecipitation synthesis method, in the presence of either polyvinylpyrrolidone (PVP) or sodium hexametaphosphate (SHMTP). The samples were investigated by powder X-ray Diffraction, Transmission Electron Microscopy, Fourier-Transform Infrared and Electron Paramagnetic Resonance spectroscopic methods, and N2 adsorption–desorption analysis. The observed surfactant-dependent effects concerned: i) particle size and morphology; ii) Mn-doping level; iii) specific surface area and porosity. The relationship between the surfactant dependent characteristics of the Mn-doped ZnO NPs and their in vitro toxicity was assessed by studying the cell viability, intracellular reactive oxygen species (ROS) generation, and DNA fragmentation in NIH3T3 fibroblast cells. The results indicated a positive correlation between the specific surface area and the magnitude of the induced toxicological effects and suggested that Mn-doping exerted a protective effect on cells by diminishing the pro-oxidative action associated with the increase in the specific BET area. The obtained results support the possibility to modulate the in vitro toxicity of ZnO nanomaterials by surfactant-controlled Mn-doping.


2020 ◽  
Vol 8 (6) ◽  
pp. 485-494
Author(s):  
Nazanin Fathi ◽  
Farzaneh Lotfipour ◽  
Solmaz M. Dizaj ◽  
Hamed Hamishehkar ◽  
Maryam Mohammadi

Background: Nanostructured lipid carriers (NLCs), due to their impressive benefits, have recently been considered in different areas. Besides, NLC loaded with essential oils is attractive for finding more effective antimicrobial products, especially against common bacteria such as Staphylococcus epidermidis (S. epidermidis). Objective: This study aims to prepare and characterize NLCs encapsulated with Punica granatum (P. granatum) seed oil (PGS oil-loaded NLCs) and examine the antimicrobial effect of this combination against S. epidermidis. Methods: PGS oil-loaded NLCs were prepared using a hot melt homogenization method. Later, they were characterized by determining particle size distribution (particle size analyzer), morphology (scanning electron microscopy (SEM)), and zeta potential (surface charge of NLCs). Minimum inhibitory concentrations (MIC) of PGS oil-loaded NLCs were assessed and compared with seed oil emulsion of P. granatum against S. epidermidis. Results: PGS oil-loaded NLCs were spherical shaped nanoparticles, with a mean size of 102.10 nm and narrow size distribution (PDI = 0.26). The antibacterial assay showed PGS oil-loaded NLCs to have a higher in vitro antimicrobial activity than seed oil emulsion of P. granatum. Conclusion: To conclude, NLCs may be a favorable carrier to develop new antimicrobial agents. Lay Summary: The lipid nanoparticles such as nanostructured lipid carriers (NLCs) appeared as products first on the cosmetic market. Their advantages help them to be used in different healthcare and cosmetic products. With regard to previous studies, Punica granatum (P. granatum) extract shows antimicrobial and antioxidant properties that could be a valuable natural source against the wide ranges of bacteria. Then, P. granatum seed oil (PGS oil-loaded NLCs) prepared in this study can be used in dental and skin-related materials as a new natural antimicrobial product.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1143 ◽  
Author(s):  
Santosh Kumar ◽  
Abhinab Mudai ◽  
Barnali Roy ◽  
Indra Bhusan Basumatary ◽  
Avik Mukherjee ◽  
...  

In the context of emerging global concerns with synthetic plastic packaging, alternative natural biodegradable packaging materials are gaining increasing attention for food packaging applications. In this study, chitosan and gelatin nanocomposite hybrid films containing green synthesized zinc oxide (ZnO) nanoparticles (NPs) were developed and microstructural properties were studied. Antimicrobial activity of the developed films was evaluated using both Gram negative (Escherichia coli) and Gram positive bacteria (Staphylococcus aureus). Green synthesis protocol was used for the precipitation of ZnO NPs using fruit extract of Cassia fistula. The as-synthesized polyhedral ZnO NPs were in the range of 20–40 nm (average size ≈29 nm). Reinforcement with ZnO NPs in the hybrid films lead to improved thermal stability, elongation-at-break (EAB), and compactness properties. The developed films with 2% and 4% ZnO NPs showed a smooth, compact, and heterogeneous surface morphology compared to the control (chitosan-gelatin hybrid) films. Disc diffusion assays showed that the nanocomposite film had significant antimicrobial activity against E. coli. The developed hybrid nanocomposite films have potential to be developed as biodegradable alternative for postharvest packaging of fresh fruits and vegetables.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Bharti ◽  
J. S. Jangwan ◽  
Goutam Kumar ◽  
Vivek Kumar ◽  
Amrish Kumar

AbstractZnO nanoparticles have been synthesized and applied for the removal of different environmental pollutants in the present study. Combustion method is used for the preparation of ZnO NPs. X-Ray diffraction pattern reveals the crystallinity of the nanoparticles, where SEM and TEM images displayed that ZnO NPs were of size less than 100 nm and nearly spherical in shape. UV–Vis and IR spectra revealed the formation of ZnO NPs. Adsorption and advanced oxidation processes were employed for the removal/degradation of trace elements/pesticide. UV reactor containing 1 UV rod of 11 W (Philips) was used for the photocatalytic degradation of pesticide. ICP–OES and GC–MS techniques were used for the further quantitative analysis of trace elements and OP pesticide—monocrotophos, respectively. The analysis shows the 88% degradation of monocrotophos when subjected to UV light in the reaction chamber for 120 min at a pH 4 when 2 g of nanocatalyst is applied. However, the removal of trace element Arsenic shows linear adsorption as compared to Cd and Se. The removal efficiency of ZnO nanoparticles for Cd and Se was 36% and 64%, respectively, after 120 min. The synthesized nanoparticles are more effective than the commercially available ones.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1059
Author(s):  
Piangjai Peerakiatkhajohn ◽  
Teera Butburee ◽  
Jung-Hoon Sul ◽  
Supphasin Thaweesak ◽  
Jung-Ho Yun

ZnO and Aluminum doped ZnO nanoparticles (Al/ZnO NPs) were successfully synthesized by the sol-gel method. Together with the effect of calcination temperatures (200, 300 and 400 °C) and Al dosage (1%, 3%, 5% and 10%) on structural, morphological and optical properties of Al/ZnO NPs, their photocatalytic degradation of methyl orange (MO) dye was investigated. The calcination temperatures at 200, 300 and 400 °C in forming structure of ZnO NPs led to spherical nanoparticle, nanorod and nanoflake structures with a well-crystalline hexagonal wurtzite, respectively. The ZnO NPs calcined at 200 °C exhibited the highest specific surface area and light absorption property, leading to the MO removal efficiency of 80% after 4 h under the Ultraviolet (UV) light irradiation. The MO removal efficiency was approximately two times higher than the nanoparticles calcined at 400 °C. Furthermore, the 5% Al/ZnO NPs exhibited superior MO removal efficiency of 99% in only 40 min which was approximately 20 times enhancement in photocatalytic activity compared to pristine ZnO under the visible light irradiation. This high degradation performance was attributed to the extended light absorption, narrowed band gap and effective suppression of electron–hole recombination through an addition of Al metal.


2017 ◽  
Vol 20 (2) ◽  
pp. 238 ◽  
Author(s):  
Rodiah Nurbaya Sari ◽  
N. Nurhasni ◽  
M. Ainul Yaqin

The synthesis of zinc oxide (ZnO) nanoparticles is an emerging research area due to its wide range of applications, such as electronics, pharmaceuticals, optics and food packaging. In this study, described <br />the green synthesis of ZnO nanoparticles and their characteristics using Sargassum sp. extract and 0.1 M zinc nitrate as the precursors. The variations include Sargassum sp. extracts volume of 5, 10, and 20<br />mL and the calcination temperature of 400, 500, and 600 oC. The characterization had been done such as the role of Sargassum sp. extract as a reducing agent for Zn2+ → Zn0 confirmed by Fourier Transform <br />Infrared Spectroscopy (FTIR) spectra due to 450-4000 cm-1 wavelength, the size of particles using Particle Size Analyzer (PSA), image and chemical composition using Scanning Electron Microscopy with X-ray microanalysis (SEM-EDS) and crystallinity using ray powder diffraction (XRD) with Cu anode at 1.54187 Å. Analysis with PSA instrument showed that ZnO particle size increased from 607 up to 649 nm along with increasing of extract concentration from 5 up to 20% (v/v). SEM imaging showed the formation of ZnO to be predominantly spherical and EDS data confirmed the existence of zinc and oxygen in the particles obtained. XRD analysis revealed hexagonal crystal system of ZnO nanoparticles and decreased in crystallite size was observed from 31.4 to 14.7 nm with increased in calcination temperature from 400 to 600 oC.


Sign in / Sign up

Export Citation Format

Share Document