scholarly journals Ruxolitinib Suppresses Liver Fibrosis Progression and Accelerates Fibrosis Reversal via Selectively Targeting Janus Kinase 1/2

Author(s):  
Zhenghui Song ◽  
Xinhui Liu ◽  
Wan Zhang ◽  
Yue Luo ◽  
Hua Xiao ◽  
...  

Abstract BackgroundJAK1 and JAK2 have been implicated in fibrosis and cancer as a fibroblast-related marker; however, their role in liver fibrosis has not been elucidated. Here, we aim to determine the effect and underlying mechanism of JAK1/2 inhibition on liver fibrosis and hepatic stellate cells (HSCs) and further explore the therapeutic efficacy of Ruxolitinib, a JAK1/2 selective inhibitor, on preventing and reversing liver fibrosis in mice. MethodsImmunohistochemistry staining of JAK1 and JAK2 were performed on liver tissue in mice with hepatic fibrosis and human liver tissue microarray of liver cirrhosis and liver cancer. LX-2 cells treated with specific siRNA of JAK1 and JAK2 were used to analysis activation, proliferation and migration of HSCs regulated by JAK1/2. The effects of Ruxolitinib (JAK1/2 inhibitor) on liver fibrosis were studied in LX-2 cells and two progressive and reversible fibrosis animal models (carbon tetrachloride (CCl4), Thioacetamide (TAA)). ResultsWe found that JAK1/2 expression was positively correlated with the progression of HCC in humans and the levels of liver fibrosis in mice. Silencing of JAK1/2 down-regulated their downstream signaling and inhibited proliferation, migration, and activation of HSCs in vitro, while Ruxolitinib had similar effects on HSCs. Importantly, Ruxolitinib significantly attenuated fibrosis progression, improved cell damage, and accelerated fibrosis reversal in the liver of mice treated with CCl 4 or TAA. ConclusionsJAK1/2 regulates the function of HSCs and plays an essential role in liver fibrosis and HCC development. Its inhibitor, Ruxolitinib, may be an effective drug for preventing and treating liver fibrosis.

2021 ◽  
Vol 118 (17) ◽  
pp. e2019633118
Author(s):  
Norihisa Nishimura ◽  
Davide De Battista ◽  
David R. McGivern ◽  
Ronald E. Engle ◽  
Ashley Tice ◽  
...  

Older age at the time of infection with hepatitis viruses is associated with an increased risk of liver fibrosis progression. We hypothesized that the pace of fibrosis progression may reflect changes in gene expression within the aging liver. We compared gene expression in liver specimens from 54 adult donors without evidence of fibrosis, including 36 over 40 y old and 18 between 18 and 40 y old. Chitinase 3-like 1 (CHI3L1), which encodes chitinase-like protein YKL-40/CHI3L1, was identified as the gene with the greatest age-dependent increase in expression in liver tissue. We investigated the cellular source of CHI3L1 in the liver and its function using liver tissue specimens and in vitro models. CHI3L1 expression was significantly higher in livers of patients with cirrhosis of diverse etiologies compared with controls represented by patients who underwent liver resection for hemangioma. The highest intrahepatic CHI3L1 expression was observed in cirrhosis due to hepatitis D virus, followed by hepatitis C virus, hepatitis B virus, and alcohol-induced cirrhosis. In situ hybridization of CHI3L1 messenger RNA (mRNA) identified hepatocytes as the major producers of CHI3L1 in normal liver and in cirrhotic tissue, wherein hepatocytes adjacent to fibrous septa showed higher CHI3L1 expression than did those in more distal areas. In vitro studies showed that recombinant CHI3L1 promotes proliferation and activation of primary human hepatic stellate cells (HSCs), the major drivers of liver fibrosis. These findings collectively demonstrate that CHI3L1 promotes liver fibrogenesis through a direct effect on HSCs and support a role for CHI3L1 in the increased susceptibility of aging livers to fibrosis progression.


2006 ◽  
Vol 32 (5) ◽  
pp. 649-657 ◽  
Author(s):  
Christiano Bittencourt Machado ◽  
Wagner Coelho de Albuquerque Pereira ◽  
Mahmoud Meziri ◽  
Pascal Laugier

2021 ◽  
Author(s):  
Peng Qi ◽  
Ming-Ze Ma ◽  
Jing-Hua Kuai

Abstract Aim:To elucidate the inhibitory role of growth differentiation factor 15 (GDF15) in liver fibrosis and its possible activation mechanism in hepatic stellate cells of mice.Methods:We generated a GDF15-neutralizing antibody that can inhibit TGF-β1-induced activation of the TGF-β/Smad2/3 pathway in LX-2 cells. All the mice in this study were induced by carbon tetrachloride and thioacetamide. In addition, primary hepatic stellate cells from mice were isolated from fresh livers using Nycodenz density gradient separation. The severity and extent of liver fibrosis in mice were evaluated by Sirius Red and Masson staining. The effect of GDF15 on the activation of the TGF-β pathway was detected using dual-luciferase reporter assays and Western blotting assays.Results:The expression of GDF15 in cirrhotic liver tissue was higher than that in normal liver tissue. Blocking GDF15 with a neutralizing antibody resulted in a delay in primary hepatic stellate cell activation and remission of liver fibrosis induced by carbon tetrachloride or thioacetamide. Meanwhile, TGF-β pathway activation was partly inhibited by a GDF15-neutralizing antibody in primary hepatic stellate cells. These results indicated that GDF15 plays an important role in regulating HSC activation and liver fibrosis progression.Conclusions:The inhibition of GDF15 attenuates chemical-inducible liver fibrosis and delays hepatic stellate cell activation, and this effect is probably mainly attributed to its regulatory role in TGF-β signalling.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yan Xiong ◽  
M Julia Scerbo ◽  
Anett Seelig ◽  
Francesco Volta ◽  
Nils O'Brien ◽  
...  

Islet vascularization is essential for intact islet function and glucose homeostasis. We have previously shown that primary cilia directly regulate insulin secretion. However, it remains unclear whether they are also implicated in islet vascularization. At eight weeks, murine Bbs4-/-islets show significantly lower intra-islet capillary density with enlarged diameters. Transplanted Bbs4-/- islets exhibit delayed re-vascularization and reduced vascular fenestration after engraftment, partially impairing vascular permeability and glucose delivery to β-cells. We identified primary cilia on endothelial cells as the underlying cause of this regulation, via the vascular endothelial growth factor-A (VEGF-A)/VEGF receptor 2 (VEGFR2) pathway. In vitro silencing of ciliary genes in endothelial cells disrupts VEGF-A/VEGFR2 internalization and downstream signaling. Consequently, key features of angiogenesis including proliferation and migration are attenuated in human BBS4 silenced endothelial cells. We conclude that endothelial cell primary cilia regulate islet vascularization and vascular barrier function via the VEGF-A/VEGFR2 signaling pathway.


2021 ◽  
Author(s):  
Lili Li ◽  
Xiaohui Zhu ◽  
Xingxing Chai ◽  
Xiaoyu Chen ◽  
Xiaohua Su ◽  
...  

Abstract Helicobacter pylori ( H. pylori ) is a major pathogenic factor for the development of gastric diseases including chronic gastritis and gastric cancer. Callicarpa nudiflora (CN), an air-dried leaves extract of Callicarpa nudiflora Hook. & Arn., has been found to exhibit a broad-spectrum antibacterial effect. In our study, we extracted the active ingredient from air-dried leaves of Callicarpa nudiflora, detected the effect of CN against H. pylori -infected GES-1 cells in vitro , and elucidated the underlying mechanism. GES-1 cells were cocultured with HPSS1 at MOI = 100:1 and treated with different concentrations of CN. Results indicated that CN not only significantly decreased cellular lactate dehydrogenase leakage, but also markedly attenuated H. pylori -induced cell apoptosis and ROS production in GSE-1 cells, therefore protecting gastric epithelial cells against injuries caused by H. pylori . CN also inhibited the secretions of inflammatory factors, such as tumor necrosis factor-α (TNF-α), IL-1β, IL-6 and IL-8. Furthermore, CN remarkably decreased the expression levels of NLRP3, PYCARD, active Caspase-1. In conclusion, CN exhibited highly efficient protective effect against H. pylori -induced gastritis and cell damage; Mechanismly, CN suppressed H. pylori -triggered inflammatory response and pyroptosis through depressing ROS production and NLRP3 inflammasome activation via ROS/NLRP3/IL-1β signaling axis.


2021 ◽  
Author(s):  
Linfei Yang ◽  
Qian Li ◽  
Hai Zhong ◽  
Liang Ye ◽  
Surong Fang ◽  
...  

Abstract Background The disordered expression of maternally expressed gene 3 (MEG3) has been observed in non-small-cell lung cancer (NSCLC). However, the molecular mechanism accounting for this abnormal expression is not fully understood. Methods MEG3 expression was detected by qRT-PCR in 51 cases of NSCLC and adjacent normal tissues. Then, the relationship between MEG3 and miR-208a-3p was assessed in vitro by cell viability assay, cell migration assay, protein extraction and western blot analysis. Resoults We observed that MEG3 expression was decreased in NSCLC tissues. And MEG3 expression was negatively related to lymph node metastasis and differentiation. Moreover, MEG3 expression is regulated by miR-208a-3p expression by overexpression and knockout experiments. Furthermore, we focused on the underlying mechanism of MEG3 downregulation. We found that the overexpression of miR-208a-3p reduced the level of MEG3 expression based on computational predictions and in vitro assays. Using CCK-8 and transwell migration assays, we found that the overexpression of miR-208a-3p can increased proliferation and apoptosis in NSCLC cells. Moreover, the depletion of MEG3 rescued the proliferation and migration induced by miR-208a-3p knockdown. Conclusion Taken together, the results of this study reveal that miR-208a-3p promotes NSCLC tumorigenesis by negatively regulating MEG3 expression and functions as an oncogenic miRNA in NSCLC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shenzong Rao ◽  
Jie Xiang ◽  
Jingsong Huang ◽  
Shangang Zhang ◽  
Min Zhang ◽  
...  

Abstract Background PRC1 (Protein regulator of cytokinesis 1) regulates microtubules organization and functions as a novel regulator in Wnt/β-catenin signaling pathway. Wnt/β-catenin is involved in development of liver fibrosis (LF). We aim to investigate effect and mechanism of PRC1 on liver fibrosis. Methods Carbon tetrachloride (CCl4)-induced mice LF model was established and in vitro cell model for LF was induced by mice primary hepatic stellate cell (HSC) under glucose treatment. The expression of PRC1 in mice and cell LF models was examined by qRT-PCR (quantitative real-time polymerase chain reaction), western blot and immunohistochemistry. MTT assay was used to detect cell viability, and western blot to determine the underlying mechanism. The effect of PRC1 on liver pathology was examined via measurement of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and hydroxyproline, as well as histopathological analysis. Results PRC1 was up-regulated in CCl4-induced mice LF model and activated HSC. Knockdown of PRC1 inhibited cell viability and promoted cell apoptosis of activated HSC. PRC1 expression was regulated by Wnt3a signaling, and PRC1 could regulate downstream β-catenin activation. Moreover, PRC1 could activate glioma-associated oncogene homolog 1 (GLI1)-dependent osteopontin expression to participate in LF. Adenovirus-mediated knockdown of PRC1 in liver attenuated LF and reduced collagen deposition. Conclusions PRC1 aggravated LF through regulating Wnt/β-catenin mediated GLI1-dependent osteopontin expression, providing a new potential therapeutic target for LF treatment.


2018 ◽  
Vol 115 (34) ◽  
pp. 8581-8586 ◽  
Author(s):  
Pengbo Wang ◽  
Marcel Dreger ◽  
Elena Madrazo ◽  
Craig J. Williams ◽  
Rafael Samaniego ◽  
...  

Cell migration through extracellular matrices requires nuclear deformation, which depends on nuclear stiffness. In turn, chromatin structure contributes to nuclear stiffness, but the mechanosensing pathways regulating chromatin during cell migration remain unclear. Here, we demonstrate that WD repeat domain 5 (WDR5), an essential component of H3K4 methyltransferase complexes, regulates cell polarity, nuclear deformability, and migration of lymphocytes in vitro and in vivo, independent of transcriptional activity, suggesting nongenomic functions for WDR5. Similarly, depletion of RbBP5 (another H3K4 methyltransferase subunit) promotes similar defects. We reveal that a 3D environment increases the H3K4 methylation dependent on WDR5 and results in a globally less compacted chromatin conformation. Further, using atomic force microscopy, nuclear particle tracking, and nuclear swelling experiments, we detect changes in nuclear mechanics that accompany the epigenetic changes induced in 3D conditions. Indeed, nuclei from cells in 3D environments were softer, and thereby more deformable, compared with cells in suspension or cultured in 2D conditions, again dependent on WDR5. Dissecting the underlying mechanism, we determined that actomyosin contractility, through the phosphorylation of myosin by MLCK (myosin light chain kinase), controls the interaction of WDR5 with other components of the methyltransferase complex, which in turn up-regulates H3K4 methylation activation in 3D conditions. Taken together, our findings reveal a nongenomic function for WDR5 in regulating H3K4 methylation induced by 3D environments, physical properties of the nucleus, cell polarity, and cell migratory capacity.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1808
Author(s):  
Bao Le ◽  
Thi Ngoc Anh Pham ◽  
Seung Hwan Yang

In the present study, we assessed the extraction of low molecular weight soluble polysaccharides (MESP) from soybean by-products using microwave-assisted enzymatic technology and proposed the chemical structure of MESP using Fourier transform-infrared spectroscopy, gas chromatography, and 1H and 13C nuclear magnetic resonance spectrum analysis. The results suggested that MESP mainly comprised arabinose, rhamnose, and glucuronic acid with (1→4) glycosidic linkages in the backbone. Compared with inulin, MESP was found to selectively stimulate the growth of Lactobacillus probiotics. Moreover, the results of in vitro fermentation indicated that MESP significantly increased the concentrations of both acetate and butyrate (p < 0.05). MESP were treated on lipopolysaccharide (LPS)-stimulated RAW264.7 cells to determine the anti-inflammatory effect in vitro. It was observed that MESP inhibited nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 production. Furthermore, Western blotting results indicated that MESP significantly attenuated LPS-induced downregulation of phosphorylation levels of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) in macrophages. The underlying mechanism might involve inhibition of the expression of pro-inflammatory cytokines, presumably via JAK2/STAT3 pathway. Collectively, the results of our study paved way for the production of MESP, which may be potentially used as nutraceutical ingredients for prebiotics and anti-inflammatory agents, from soybean residue.


2019 ◽  
Vol 316 (3) ◽  
pp. L547-L557 ◽  
Author(s):  
Ruifeng Zhang ◽  
Hua Su ◽  
Xiuqing Ma ◽  
Xiaoling Xu ◽  
Li Liang ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) protects against hypoxic pulmonary hypertension (HPH) by inhibiting the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). Under hypoxia, the hypoxia-inducible factor 1α (HIF-1α) inhibits ACE2 indirectly; however, the underlying mechanism is unclear. In the present study, we found that exposure to chronic hypoxia stimulated microRNA (miRNA) let-7b expression in rat lung via a HIF-1α-dependent pathway. Let-7b downregulated ACE2 expression by directly targeting the coding sequence of ACE2. Our in vitro and in vivo results revealed that let-7b contributed to the pathogenesis of HPH by inducing PASMCs proliferation and migration. Let-7b knockout mitigated right ventricle hypertrophy and pulmonary vessel remodeling in HPH by restoring ACE2 expression. Overall, we demonstrated that HIF-1α inhibited ACE2 expression via the HIF-1α-let-7b-ACE2 axis, which contributed to the pathogenesis of HPH by stimulating PASMCs proliferation and migration. Since let-7b knockout alleviated the development of HPH, let-7b may serve as a potential clinical target for the treatment of HPH.


Sign in / Sign up

Export Citation Format

Share Document