scholarly journals Effects of Combined Abiotic Stresses On Nutrient Content of European Wheat and Implications For Nutritional Security Under Climate Change Scenarios

Author(s):  
Yamdeu Galani ◽  
Emilie Øst Hansen ◽  
Ioannis Droutsas ◽  
Melvin Holmes ◽  
Andrew Challinor ◽  
...  

Abstract Climate change is causing problems for agriculture, but the effect of combined environmental stresses on crop nutritional quality is not clear. Here we studied the effect of 10 combinations of climatic conditions (temperature, CO2, O3 and drought) in controlled growth chamber conditions on the protein and mineral content of 3 wheat varieties. Results show that wheat plants under O3 exposure alone concentrated 15-31% more grain N, Fe, Mg, Mn P and Zn, reduced K by 5%, and C did not change. Ozone in the presence of elevated CO2 and higher temperature enhanced the content of Fe, Mn, P and Zn by 2-18%. Water-limited chronic O3 exposure resulted in 9-46% higher concentrations of all the minerals, except K. The effect of climate change could increase the ability of wheat to meet adult daily dietary requirements by 1.06-1.12-fold for Fe, Zn and protein, but decrease those of Mg, Mn and P by 1.03-1.06-fold, and K by 2.78-fold. The role of wheat in future nutrition security is discussed.

2021 ◽  
Vol 18 (1) ◽  
pp. 52-65
Author(s):  
P. N. Mikheev

The article discusses issues related to the impact of climate change on the objects of the oil and gas industry. The main trends in climate change on a global and regional (on the territory of Russian Federation) scale are outlined. Possible approaches to the identification and assessment of climate risks are discussed. The role of climatic risks as physical factors at various stages of development and implementation of oil and gas projects is shown. Based on the example of oil and gas facilities in the Tomsk region, a qualitative assessment of the level of potential risk from a weather and climatic perspective is given. Approaches to creating a risk management and adaptation system to climate change are presented.


NeoBiota ◽  
2020 ◽  
Vol 58 ◽  
pp. 129-160
Author(s):  
Anna Schertler ◽  
Wolfgang Rabitsch ◽  
Dietmar Moser ◽  
Johannes Wessely ◽  
Franz Essl

The coypu (Myocastor coypus) is a semi-aquatic rodent native to South America which has become invasive in Europe and other parts of the world. Although recently listed as species of European Union concern in the EU Invasive Alien Species Regulation, an analysis of the current European occurrence and of its potential current and future distribution was missing yet. We collected 24,232 coypu records (corresponding to 25,534 grid cells at 5 × 5 km) between 1980 and 2018 from a range of sources and 28 European countries and analysed them spatiotemporally, categorising them into persistence levels. Using logistic regression, we constructed consensus predictions across all persistence levels to depict the potential current distribution of the coypu in Europe and its change under four different climate scenarios for 2041–2060. From all presence grid cells, 45.5% showed at least early signs of establishment (records temporally covering a minimum of one generation length, i.e. 5 years), whereas 9.8% were considered as containing established populations (i.e. three generation lengths of continuous coverage). The mean temperature of the warmest quarter (bio10), mean diurnal temperature range (bio2) and the minimum temperature of the coldest month (bio6) were the most important of the analysed predictors. In total, 42.9% of the study area are classified as suitable under current climatic conditions, of which 72.6% are to current knowledge yet unoccupied; therefore, we show that the coypu has, by far, not yet reached all potentially suitable regions in Europe. Those cover most of temperate Europe (Atlantic, Continental and Pannonian biogeographic region), as well as the coastal regions of the Mediterranean and the Black Sea. A comparison of the suitable and occupied areas showed that none of the affected countries has reached saturation by now. Under climate change scenarios, suitable areas will slightly shift towards Northern regions, while a general decrease in suitability is predicted for Southern and Central Europe (overall decrease of suitable areas 2–8% depending on the scenario). Nevertheless, most regions that are currently suitable for coypus are likely to be so in the future. We highlight the need to further investigate upper temperature limits in order to properly interpret future climatic suitability for the coypu in Southern Europe. Based on our results, we identify regions that are most at risk for future invasions and provide management recommendations. We hope that this study will help to improve the allocation of efforts for future coypu research and contribute to harmonised management, which is essential to reduce negative impacts of the coypu and to prevent further spread in Europe.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


2007 ◽  
Vol 97 (4) ◽  
pp. 369-378 ◽  
Author(s):  
A.E.A. Stephens ◽  
D.J. Kriticos ◽  
A. Leriche

AbstractThe oriental fruit fly,Bactrocera dorsalis(Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access,B. dorsalisand many other fruit fly species are considered major threats to many countries. CLIMEX™ was used to model the potential global distribution ofB. dorsalisunder current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions forB. dorsalisin the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range forB. dorsalisis projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution ofB. dorsalisprojected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution ofB. dorsalisis striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.


2016 ◽  
Vol 46 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Fabian H. Härtl ◽  
Ivan Barka ◽  
W. Andreas Hahn ◽  
Tomáš Hlásny ◽  
Florian Irauschek ◽  
...  

Forests provide countless ecological, societal, and climatological benefits. With changing climate, maintaining certain services may lead to a decrease in the quantity or quality of other services available from that source. Accordingly, our research objective is to analyze the effects of the provision of a certain ecosystem service on the economically optimized harvest schedules and how harvest schedules will be influenced by climate change. Based on financial portfolio theory, we determined, for two case study regions in Austria and Slovakia, treatment schedules based on nonlinear programming, which integrates climate-sensitive biophysical risks and risk-averting behavior of the management. In both cases, results recommend reducing the overaged stocking volume within several decades to establish new ingrowth, leading to an overall reduction of age and related risk, as well as an increase in growth. Under climate change conditions, the admixing of hardwoods towards spruce–fir–beech (Austria) or spruce–pine–beech (Slovakia) stands should be emphasized to account for the changing risk and growth conditions. Moreover, climate change scenarios either increased (Austria) or decreased (Slovakia) the economic return slightly. In both cases, the costs for providing the ecosystem service “rock fall protection” increases under climate change. Although in the Austrian case there is no clear tendency between the management options, in the Slovakian case, a close-to-nature management option is preferred under climate change conditions. Increasing tree species richness, increasing structural diversity, replacing high-risk stands, and reducing average growing stocks are important preconditions for a successful sustainable management of European mountain forests in the long term.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 874
Author(s):  
Jinyue Song ◽  
Hua Zhang ◽  
Ming Li ◽  
Wuhong Han ◽  
Yuxin Yin ◽  
...  

The red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), is an invasive pest, and it has spread rapidly all over the world. Predicting the suitable area of S. invicta growth in China will provide a reference that will allow for its invasion to be curbed. In this study, based on the 354 geographical distribution records of S. invicta, combined with 24 environmental factors, the suitable areas of S. invicta growth in China under current (2000s) and future (2030s and 2050s) climate scenarios (SSPs1-2.5s, SSPs2-3.5s and SSPs5-8.5s) were predicted by using the optimized MaxEnt model and geo-detector model. An iterative algorithm and knife-cut test were used to evaluate the important environmental factors that restrict the suitable area under the current climatic conditions. This study also used the response curve to determine the appropriate value of environmental factors to further predict the change and the center of gravity transfer of the suitable area under climate change. The optimized MaxEnt model has high prediction accuracy, and the working curve area (AUC) of the subjects is 0.974. Under climatic conditions, the suitable area is 81.37 × 104 km2 in size and is mainly located in the south and southeast of China. The main environmental factors affecting the suitable area are temperature (Bio1, Bio6, and Bio9), precipitation (Bio12 and Bio14) and NDVI. In future climate change scenarios, the total suitable area will spread to higher latitudes. This distribution will provide an important theoretical basis for relevant departments to rapidly prevent and control the invasion of S. invicta.


2018 ◽  
Author(s):  
Matthew Nichols ◽  
Chris J Butler ◽  
Wayne D Lord ◽  
Michelle L Haynie

The vector-borne parasite Trypanosoma cruzi infects seven million individuals globally and causes chronic cardiomyopathy and gastrointestinal diseases. Recently, T. cruzi has emerged in the southern United States. It is crucial for disease surveillance efforts to detail regions that present favorable climatic conditions for T. cruzi and vector establishment. We used MaxEnt to develop an ecological niche model for T. cruzi and five widespread Triatoma vectors based on 546 published localities within the United States. We modeled regions of current potential T. cruzi and Triatoma distribution and then regions projected to have suitable climatic conditions by 2070. Regions with suitable climatic conditions for the study organisms are predicted to increase within the United States. Our findings agree with the hypothesis that climate change will facilitate the expansion of tropical diseases throughout temperate regions and suggest climate change will influence the expansion of T. cruzi and Triatoma vectors in the United States.


2017 ◽  
pp. 120-127
Author(s):  
S.M. Svyderska

An important element of climate change is to assess changes in agro-climatic growing conditions of crops and the impact of these changes on their performance. Agriculture is the most vulnerable sector of  Ukraine's economy to fluctuations and climate change. Given the inertial nature of agriculture and the dependence of the efficiency on the weather, now need to make timely and adequate solutions to complex problems caused by climate change. Due to the expected increase in air temperature of the Northern Hemisphere food security Ukraine will largely depend on how effectively adapting agriculture to future climate change. This includes advance assessment of the impact of the expected climate change on agro-climatic conditions for growing crops. Potatoes - perennial, herbaceous, plant, but in nature is treated as an annual plant, so that the life cycle, beginning with germination and ending with the formation of bubbles and the formation of mature tubers, is one growing season. Potato is one of the most important crops grown and diversified use in almost all parts of our country. But the main focus areas of potatoes in Polesie and Forest-steppe. We consider the relative performance of the photosynthetic productivity of potato and agro-climatic conditions for growing potatoes for the period 1986 to 2005, and expected their changes calculated by the climate change scenarios A1B and A2 for the period 2011 to 2050 in Eastern and Western Forest-Steppe. We consider the agrometeorological and agro-climatic conditions in which there may be a maximum performance of potato.


Sign in / Sign up

Export Citation Format

Share Document