scholarly journals Assessing Cellulose Micro/Nanofibre Morphology Using a High Throughput Fibre Analysis Device to Predict Nanopaper Performance

Author(s):  
Jordan Pennells ◽  
Bérénice Heuberger ◽  
Céline Chaléat ◽  
Darren J. Martin

Abstract Characterising cellulose nanofibre (CNF) morphology has been identified as a grand challenge for the nanocellulose research field. Direct techniques for CNF morphology characterisation exhibit various difficulties related to the material network structure and equipment cost, while indirect techniques that investigate fibre-light interaction, fibre-solvent interaction, fibre-fibre interaction, or specific fibre surface area involve relatively facile methods but may be more unreliable. Nanopaper mechanical testing is a prevalent metric for assessing fibre-fibre interaction, but is an off-line, time-consuming, and destructive methodology. In this study, an optical fibre morphology analyser (MorFi, TechPap) was employed as an on-line, high throughput, fast turnaround tool to assess micro/nanofibre pulp morphology and predict the properties of nanopaper material. Correlation analysis identified fibre content and fibre kink properties as most correlated with nanopaper strength and toughness, while fibre width and coarseness were most inversely correlated with nanopaper performance. Principal component analysis (PCA) was employed to visualise interdependent morphological and mechanical data. Subsequently, two data driven statistical models - multiple linear regression (MLR) and machine learning based support vector regression (SVR) - were established to predict nanopaper properties from fibre morphology data, with SVR generating a more accurate prediction across all nanopaper properties (NRMSE = 0.13-0.33) compared to the MLR model (NRMSE = 0.33-0.51). This study highlights that statistical methods are useful to disentangle and visualise interdependent morphological data from an on-line fibre analysis device, while regression models are also capable of predicting paper mechanical properties from CNF samples even though these devices do not operate at nanoscale resolution.

2021 ◽  
Author(s):  
Pablo Cresta Morgado ◽  
Martín Carusso ◽  
Laura Alonso Alemany ◽  
Laura Acion

Machine learning assembles a broad set of methods and techniques to solve a wide range of problems, such as identifying individuals with substance use disorders (SUD), finding patterns in neuroimages, understanding SUD prognostic factors and their association, or determining addiction genetic underpinnings. However, machine learning use in the addiction research field continues to be insufficient. This two-part review focuses on machine learning tools and concepts and provides insights into their capabilities to facilitate their understanding and acquisition by addiction researchers. In this first part, we present supervised and unsupervised methods and techniques such as linear models, naive Bayes, support vector machines, artificial neural networks, k-means, or principal component analysis and examples of how these tools are already in use in addiction research. We also provide open-source programming tools to apply these techniques. Throughout this work, we link machine learning techniques to applied statistics. Machine learning tools and techniques can be applied to many addiction research problems and can improve addiction research.


Author(s):  
Aman Gupta and Nidhi Senger

Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. One of the most recent, challenging and appealing applications in this framework consists in sensing human body motion using smartphones to gather context infor-mation about people actions. In this context, we describe in this work an Activity Recognition database, built from the recordings of 30 subjects doing Activities of Daily Living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors, which is released to public domain on a well-known on-line repos-itory. Results, obtained on the dataset by exploiting a multiclass Support Vector Machine (SVM), are also acknowledged.


Author(s):  
Liyun Zhuang ◽  
Yepeng Guan ◽  
◽  
◽  

Complex illumination condition is one of the most critical challenging problems for practical face recognition. However, numerous studies have had no effective solutions reported for full illumination variation of face images in the facial recognition research field. In order to effectively solve full illumination variation problem, we propose a novel approach for illumination normalization for facial images based on the enhanced contrast method of histogram equalization (HE) and fusion of illumination estimations (FOIE). Then, feature extraction is applied with consideration of both Gabor wavelet and principal component analysis methods to process illumination normalization. Next, a support vector machine classifier (SVM) is used for face classification. Experimental results show that superior performance can be obtained in the developed approach by comparisons with some state-of-the-arts.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 351-357
Author(s):  
S. Le Bonté ◽  
M.-N. Pons ◽  
O. Potier ◽  
S. Chanel ◽  
M. Baklouti

An adaptive principal component analysis applied to sets of data provided by global analytical methods (UV-visible spectra, buffer capacity curves, respirometric tests) is proposed as a generic procedure for on-line and fast characterization of wastewater. The data-mining procedure is able to deal with a large amount of information, takes into account the normal variations of wastewater composition related to human activity, and enables a rapid detection of abnormal situations such as the presence of toxic substances by comparison of the actual wastewater state with a continuously updated reference. The procedure has been validated on municipal wastewater.


2020 ◽  
Vol 16 (8) ◽  
pp. 1088-1105
Author(s):  
Nafiseh Vahedi ◽  
Majid Mohammadhosseini ◽  
Mehdi Nekoei

Background: The poly(ADP-ribose) polymerases (PARP) is a nuclear enzyme superfamily present in eukaryotes. Methods: In the present report, some efficient linear and non-linear methods including multiple linear regression (MLR), support vector machine (SVM) and artificial neural networks (ANN) were successfully used to develop and establish quantitative structure-activity relationship (QSAR) models capable of predicting pEC50 values of tetrahydropyridopyridazinone derivatives as effective PARP inhibitors. Principal component analysis (PCA) was used to a rational division of the whole data set and selection of the training and test sets. A genetic algorithm (GA) variable selection method was employed to select the optimal subset of descriptors that have the most significant contributions to the overall inhibitory activity from the large pool of calculated descriptors. Results: The accuracy and predictability of the proposed models were further confirmed using crossvalidation, validation through an external test set and Y-randomization (chance correlations) approaches. Moreover, an exhaustive statistical comparison was performed on the outputs of the proposed models. The results revealed that non-linear modeling approaches, including SVM and ANN could provide much more prediction capabilities. Conclusion: Among the constructed models and in terms of root mean square error of predictions (RMSEP), cross-validation coefficients (Q2 LOO and Q2 LGO), as well as R2 and F-statistical value for the training set, the predictive power of the GA-SVM approach was better. However, compared with MLR and SVM, the statistical parameters for the test set were more proper using the GA-ANN model.


2020 ◽  
Vol 15 ◽  
Author(s):  
Shuwen Zhang ◽  
Qiang Su ◽  
Qin Chen

Abstract: Major animal diseases pose a great threat to animal husbandry and human beings. With the deepening of globalization and the abundance of data resources, the prediction and analysis of animal diseases by using big data are becoming more and more important. The focus of machine learning is to make computers learn how to learn from data and use the learned experience to analyze and predict. Firstly, this paper introduces the animal epidemic situation and machine learning. Then it briefly introduces the application of machine learning in animal disease analysis and prediction. Machine learning is mainly divided into supervised learning and unsupervised learning. Supervised learning includes support vector machines, naive bayes, decision trees, random forests, logistic regression, artificial neural networks, deep learning, and AdaBoost. Unsupervised learning has maximum expectation algorithm, principal component analysis hierarchical clustering algorithm and maxent. Through the discussion of this paper, people have a clearer concept of machine learning and understand its application prospect in animal diseases.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3983
Author(s):  
Ozren Gamulin ◽  
Marko Škrabić ◽  
Kristina Serec ◽  
Matej Par ◽  
Marija Baković ◽  
...  

Gender determination of the human remains can be very challenging, especially in the case of incomplete ones. Herein, we report a proof-of-concept experiment where the possibility of gender recognition using Raman spectroscopy of teeth is investigated. Raman spectra were recorded from male and female molars and premolars on two distinct sites, tooth apex and anatomical neck. Recorded spectra were sorted into suitable datasets and initially analyzed with principal component analysis, which showed a distinction between spectra of male and female teeth. Then, reduced datasets with scores of the first 20 principal components were formed and two classification algorithms, support vector machine and artificial neural networks, were applied to form classification models for gender recognition. The obtained results showed that gender recognition with Raman spectra of teeth is possible but strongly depends both on the tooth type and spectrum recording site. The difference in classification accuracy between different tooth types and recording sites are discussed in terms of the molecular structure difference caused by the influence of masticatory loading or gender-dependent life events.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3003
Author(s):  
Ting Pan ◽  
Haibo Wang ◽  
Haiqing Si ◽  
Yao Li ◽  
Lei Shang

Fatigue is an important factor affecting modern flight safety. It can easily lead to a decline in pilots’ operational ability, misjudgments, and flight illusions. Moreover, it can even trigger serious flight accidents. In this paper, a wearable wireless physiological device was used to obtain pilots’ electrocardiogram (ECG) data in a simulated flight experiment, and 1440 effective samples were determined. The Friedman test was adopted to select the characteristic indexes that reflect the fatigue state of the pilot from the time domain, frequency domain, and non-linear characteristics of the effective samples. Furthermore, the variation rules of the characteristic indexes were analyzed. Principal component analysis (PCA) was utilized to extract the features of the selected feature indexes, and the feature parameter set representing the fatigue state of the pilot was established. For the study on pilots’ fatigue state identification, the feature parameter set was used as the input of the learning vector quantization (LVQ) algorithm to train the pilots’ fatigue state identification model. Results show that the recognition accuracy of the LVQ model reached 81.94%, which is 12.84% and 9.02% higher than that of traditional back propagation neural network (BPNN) and support vector machine (SVM) model, respectively. The identification model based on the LVQ established in this paper is suitable for identifying pilots’ fatigue states. This is of great practical significance to reduce flight accidents caused by pilot fatigue, thus providing a theoretical foundation for pilot fatigue risk management and the development of intelligent aircraft autopilot systems.


Sign in / Sign up

Export Citation Format

Share Document