scholarly journals KCNH2 Regulates the Growth and Metastasis of Pancreatic Cancer

Author(s):  
Bin Zhou ◽  
Jinghao Lei ◽  
Qiang Wang ◽  
Tengfei Qu ◽  
Lichao Cha ◽  
...  

Abstract The mortality rate of pancreatic cancer (PC) remains high due to late diagnosis, early metastasis, and difficulty of complete resection. The online databases showed that potassium voltage-gated channel subfamily H member 2 (KCNH2) was highly expressed in pancreatic tumor tissues and was closely related to the poor survival of patients with PC. However, the mechanism of action of KCNH2 in PC is still unclear. In the present study, for the first time, we explored the regulatory effect of KCNH2 in PC. The results showed that KCNH2 was upregulated in PC compared with normal pancreatic tissues. High KCNH2 expression was associated with low tissue differentiation, high malignancy, and poor prognosis of PC. Moreover, knockdown of KCNH2 inhibited the proliferation and apoptosis of PC cells, as well as the epithelial-mesenchymal transition process, thereby promoting PC cell migration and invasion. In addition, KCNH2 knockdown inhibited the progression and metastasis of PC in a mouse xenograft model. In conclusion, these findings highlighted the potential of KCNH2 as a targeted molecule in the treatment of PC.

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Ziqian Yan ◽  
Zhimei Sheng ◽  
Yuanhang Zheng ◽  
Ruijun Feng ◽  
Qinpei Xiao ◽  
...  

AbstractStudies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3′UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.


2020 ◽  
Author(s):  
Xiaowei Fu ◽  
Xueqiang Deng ◽  
Weidong Xiao ◽  
Bo Huang ◽  
Xuan Yi ◽  
...  

Abstract BackgroundChemoresistance is a major cause of treatment failure in pancreatic cancer (PC). It has been demonstrated that epithelial-to-mesenchymal transition (EMT) is closely related to drug resistance in PC; however, the underlying mechanisms are not yet fully understood. Recently found evidence has suggested that nuclear-enriched abundant transcript 1 (NEAT1) is involved in the development of chemoresistance. However, the role and mechanism of NEAT1 in PC gemcitabine resistance remain unknown.MethodsTwo independent gemcitabine-resistant (GR) PC cell lines, PANC-1/GR and SW1990/GR, were established. Transwell assays were used to validate whether GR cells acquired EMT. qRT-PCR and western blot were performed to detect the expression levels of NEAT1, miR-506-3p, and ZEB2 in GR cells. MTT and cell apoptosis assays were conducted to evaluate the sensitivity of GR cells to gemcitabine. Rescue experiments were employed to investigate whether NEAT1 mediates drug resistance of GR cells through modulation of the miR-506-3p/ZEB2/EMT axis. Furthermore, a mouse xenograft model was established to confirm these findings.ResultsGR cells displayed markedly enhanced migration and invasion abilities, decreased expression of E-cadherin, and upregulation of N-cadherin, Vimentin, Snail, ZEB1, and ZEB2. Furthermore, elevated expression of NEAT1 was observed in GR cells. Downregulation of NEAT1 sensitized GR cells to gemcitabine. More importantly, we demonstrated that downregulation of NEAT1 enhanced the sensitivity of GR cells to gemcitabine by reversing the EMT process. NEAT1 regulated ZEB2 expression by sponging miR-506-3p, and the function of NEAT1 in GR cells was dependent on miR-506-3p. These findings were further confirmed in a nude mouse xenograft model.ConclusionsTaken together, downregulation of NEAT1 sensitized the GR PC cells to gemcitabine through modulation of the miR-506-3p/ZEB2/EMT axis. These results provide a new direction for improving the chemotherapeutic effects in PC.


2020 ◽  
Vol 19 ◽  
pp. 153303381989872 ◽  
Author(s):  
Ning An ◽  
Bo Zheng

Objective: The aim of the present research is to study the roles of miR-203a-3p on cell proliferation, migration, invasion, and epithelial–mesenchymal transition in pancreatic cancer. Methods: Transcription profiles were acquired from Gene Expression Omnibus database, which was used to screen out the differentially expressed microRNAs and messenger RNAs in pancreatic cancer. Pancreatic cancer tissues were used to verify the bioinformatics results by quantitative real-time polymerase chain reaction. The relationship between miR-203a-3p and SLUG was examined by TargetScan software, dual-luciferase reporter assay, and RNA immunoprecipitation. The Cell Counting Kit-8, wound healing, and transwell assays were conducted to investigate the proliferation, migration, and invasion capability of pancreatic cancer cells, respectively. The expression of epithelial–mesenchymal transition–related proteins was determined by the Western blot assay. Xenograft assay was performed to verify findings from in vitro assays. Results: Bioinformatic analysis found that a total of 113 microRNAs and 1749 messenger RNAs expressed differentially in pancreatic cancer tissues. Among these microRNAs, the expression of miR-203a-3p was significantly decreased in both pancreatic cancer tissues and cells. On the other hand, the SLUG expression was remarkably upregulated in pancreatic cancer tissues and cells in comparison with normal tissues and cells. Moreover, TargetScan software, dual-luciferase reporter assay, and RNA immunoprecipitation revealed that SLUG was a target of miR-203a-3p. The upregulation of miR-203a-3p expression inhibited the proliferation, migration, and invasion ability of pancreatic cancer cells by suppressing the epithelial–mesenchymal transition process via sponging SLUG. Conclusion: These findings indicate that downregulation of miR-203a-3p in pancreatic cancer cells leads to high expression of SLUG, which promotes epithelial–mesenchymal transition process and induces cancer progression.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yong Zeng ◽  
Min Zou ◽  
Yan Liu ◽  
Keting Que ◽  
Yunbing Wang ◽  
...  

Keratin 17 (K17), a member of type I acidic epithelial keratin family, has been reported to be upregulated in many malignant tumors and to be involved in promoting the development of tumors. However, the precise role of K17 in progression of pancreatic cancer is still unknown. In this study, we found that K17 expression was highly expressed in pancreatic cancer tissues and cell lines and that upregulated expression was associated with the pathological grade and poor prognosis. K17 expression served as an independent predictor of pancreatic cancer survival. Meanwhile, we showed that knocking down K17 induced pancreatic cancer cell proliferation, colony formation and tumor growth in xenografts in mice. However, K17 upregulation inhibited pancreatic cancer cell proliferation and colony formation. Further mechanistic study revealed that K17 knockdown promoted cell cycle progression by upregulating CyclinD1 expression and repressed cell apoptosis. However, K17 upregulation suppressed cell cycle progression by decreasing CyclinD1 expression, and induced apoptosis by increasing the levels of cleaved Caspase3. In addition, K17 knockdown promoted pancreatic cancer cell migration and invasion, but K17 upregulation suppressed cell migration and invasion. Moreover, knocking down K17 promoted epithelial-mesenchymal transition (EMT) in pancreatic cancer cell by inhibiting E-cadherin expression and inducing Vimentin expression, and the effects of K17 upregulation were opposite to that of K17downregulation. Taken together, our findings suggest that K17 functions as a potential tumor suppressor, even though it is upregulated in pancreatic cancer.


2018 ◽  
Vol 48 (2) ◽  
pp. 838-846 ◽  
Author(s):  
Yuan He ◽  
Hao Hu ◽  
Yandong Wang ◽  
Hao Yuan ◽  
Zipeng Lu ◽  
...  

Background/Aims: Mounting evidence suggests that epitranscriptional modifications regulate multiple cellular processes. N6-Methyladenosine (m6A), the most abundant reversible methylation of mRNA, has critical roles in cancer pathogenesis. However, the mechanisms and functions of long non-coding RNA (lncRNA) methylation remain unclear. Pancreatic cancer resulted in 411,600 deaths globally in 2015. By the time of pancreatic cancer diagnosis, metastasis has often occurred in other parts of the body. The present study sought to investigate lncRNA m6A modification and its roles in pancreatic cancer. Methods: Differential expression between cancer cells and matched normal cells was evaluated to identify candidate lncRNAs. The lncRNA KCNK15-AS1 was detected in cancer tissues and various pancreatic cells using RT-qPCR. KCNK15-AS1 was transfected into cells to explore its role in migration and invasion. Then, m6A RNA immunoprecipitation was performed to detect methylated KCNK15-AS1 in tissues and cells. Epithelial–mesenchymal transition (EMT) markers were used to evaluate KCNK15-AS1-mediated EMT processes. Results: KCNK15-AS1 was downregulated in pancreatic cancer tissues compared with paired adjacent normal tissues. KCNK15-AS1 inhibited migration and invasion in MIA PaCa-2 and BxPC-3 cells. Furthermore, total RNA methylation in cancer cells was significantly enriched relative to that in immortalized human pancreatic duct epithelial (HPDE6-C7) cells. In addition, the m6A eraser ALKBH5 was downregulated in cancer cells, which can demethylate KCNK15-AS1 and regulate KCNK15-AS1-mediated cell motility. Conclusion: Our results have revealed a novel mechanism by which ALKBH5 inhibits pancreatic cancer motility by demethylating lncRNA KCNK15-AS1, identifying a potential therapeutic target for pancreatic cancer.


2019 ◽  
Vol 9 ◽  
Author(s):  
Zhang-qi Cao ◽  
Xue-xi Wang ◽  
Li Lu ◽  
Jing-wen Xu ◽  
Xiao-bin Li ◽  
...  

β-sitosterol (BS), a major bioactive constituent present in plants, has shown potent anti-cancer activity against many human cancer cells, but its activity in pancreatic cancer (PC) cells has rarely been reported. Gemcitabine (GEM) is one of the first-line drugs for PC therapy, however, the treatment effect is not sustained due to prolonged drug resistance. In this study, we firstly studied the anti-PC activity and the mechanism of BS alone and in combination with GEM in vitro and in vivo. BS effectively inhibited the growth of PC cell lines by inhibiting proliferation, inducing G0/G1 phase arrest and apoptosis, suppressed the NF- kB activity, and increased expression of the protein Bax but decreased expression of the protein Bcl-2. Moreover, BS inhibited migration and invasion and downregulated epithelial–mesenchymal transition (EMT) markers and AKT/GSK-3β signaling pathways. Furthermore, the combination of BS and GEM exhibited a significant synergistic effect in MIAPaCa-2 and BXPC-3 cells. More importantly, the combined treatment with BS and GEM lead to significant growth inhibition of PC xenografts. Overall, our data revealed a promising treatment option for PC by the combination therapy of BS and GEM.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1856 ◽  
Author(s):  
Wei ◽  
Penso ◽  
Hackman ◽  
Wang ◽  
Mackenzie

Most pancreatic cancers are usually diagnosed at an advanced stage when they have already metastasized. Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, has been shown to reduce pancreatic cancer growth, but its effect on metastasis remains elusive. This study evaluated the capacity of EGCG to inhibit pancreatic cancer cell migration and invasion and the underlying mechanisms. EGCG reduced pancreatic cancer cell growth, migration, and invasion in vitro and in vivo. EGCG prevented “Cadherin switch” and decreased the expression level of TCF8/ZEB1, β-Catenin, and Vimentin. Mechanistically, EGCG inhibited the Akt pathway in a time-dependent manner, by suppressing IGFR phosphorylation and inducing Akt degradation. Co-treatment with catalase or N-Acetyl-L-cysteine did not abrogate EGCG’s effect on the Akt pathway or cell growth. Moreover, EGCG synergized with gemcitabine to suppress pancreatic cancer cell growth, migration, and invasion, through modulating epithelial–mesenchymal transition markers and inhibiting Akt pathway. In summary, EGCG may prove beneficial to improve gemcitabine sensitivity in inhibiting pancreatic cancer cell migration and invasion, to some extent through the inhibition of Akt pathway and epithelial–mesenchymal transition.


2021 ◽  
Author(s):  
Qing Liu ◽  
Ouyang Li ◽  
Chi Zhou ◽  
Yu Wang ◽  
Chunxue He ◽  
...  

Abstract Background: Thyroid cancer is the most prevalent malignancy and one of the leading causes of cancer-related deaths. Recent studies have revealed that microRNAs (miRNAs) play an important role in tumorigenesis in various cancer types by affecting the expression of its targets. However, the role of miR-32-5p in thyroid cancer remains limited. Methods: In this study, we attempt to explore the role of miR-32-5p in thyroid cancer and elucidate the underlying mechanism. Expression of miR-32-5p was determined by quantitative reverse transcription PCR. Functional assays were performed by CCK-8 assay, cell colony assay, cell apoptosis assay, cell migration and invasion assays, cell cycle assay and luciferase assay. Protein expression was analyzed by Western blot.Results: In the present study, the role of miR-32-5p in thyroid cancer was firstly explored. It is found that miR-32-5p was downregulated in thyroid cancer tissues and cells. Overexpression of miR-32-5p inhibited thyroid cancer cells proliferation, migration, invasion and epithelial‐mesenchymal transition process; while suppression of miR-32-5p exhibited an opposite effect on thyroid cancer cells. In addition, In addition, a luciferase assay showed Twist1 was identified as a direct target of miR-32-5p in thyroid cancer, and further study showed that restoration of Twist1 attenuated the biological effect of miR-32-5p on thyroid cancer cells. Conclusion: In conclusion, our results demonstrated miR-32-5p functions as a tumor suppressor by targeting Twist1 in thyroid cancer, providing a novel insight into thyroid cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document