scholarly journals DHCR24 Promotes Melanoma Stem-Like Cells Formation and Mediates Vemurafenib Resistance by Accumulating 27-Hydroxycholesterol

Author(s):  
Feiliang Zhong ◽  
Tingting Chen ◽  
Jia Liu ◽  
Ying Wang ◽  
Mingdong Yao ◽  
...  

Abstract Background: Melanoma is the most serious skin cancer with gradually increased incidence and poor prognosis mainly as the result of cancer stem cell (CSC) expansion and drug resistance. Some studies have suggested that dysregulated cholesterol homeostasis increasing tumorigenicity and metastasis in cancers. In the present study, our objective was to elucidate the contribution of 24-Dehydrocholesterol reductase (DHCR24) towards melanoma progression and drug resistance.Methods: Immunohistochemistry and HE staining were performed for determing the expression of DHCR24 in melanoma patients, lentivirus perturbation and functional assays were used to evaluate the ability of turmorigenesis of DHCR24 altered melanoma cells and melanoma stem-like cells. RNA sequencing (RNA-seq) and targeted metabolomics were carried out for identifying metabolites which contributes melanoma stem-like cell expansion and vemurafenib treatment resistance.Results: DHCR24 was over-expressed in melanoma patients while knockdown of DHCR24 blocked melanoma cells in S phase and lead to significant inhibition in proliferation and migration. Meanwhile, forced expression of DHCR24 promotes the growth of melanoma cells in xenograft mice. We further demonstrated that DHCR24 promotes the proliferation of melanoma stem-like cell populations by activating Rap1/AKT signaling and result in accumulation of cellular 27-Hydroxycholesterol (27-HC) contents. Next, we validated that both CYP27A1 and 27-HC administration contributed to melanoma stem-like cells formation and vemurafenib resistance through AKT-308/309 phosphorylation. Conclusions: Our data confirmed the oncogenic role of DHCR24 in melanoma stem-like cells proliferation and vemurafenib resistance by regulating 27-HC. These findings established the basis of targeting DHCR24 as a potential therapeutic target for advanced melanoma.

2021 ◽  
Vol 22 (7) ◽  
pp. 3682
Author(s):  
Dorota Gil ◽  
Piotr Laidler ◽  
Marta Zarzycka ◽  
Joanna Dulińska-Litewka

The twofold role of autophagy in cancer is often the therapeutic target. Numerous regulatory pathways are shared between autophagy and other molecular processes needed in tumorigenesis, such as translation or survival signaling. Thus, we have assumed that ILK knockdown should promote autophagy, and used together with chloroquine, an autophagy inhibitor, it could generate a better anticancer effect by dysregulation of common signaling pathways. Expression at the protein level was analyzed using Western Blot; siRNA transfection was done for ILK. Analysis of cell signaling pathways was monitored with phospho-specific antibodies. Melanoma cell proliferation was assessed with the crystal violet test, and migration was evaluated by scratch wound healing assays. Autophagy was monitored by the accumulation of its marker, LC3-II. Our data show that ILK knockdown by siRNA suppresses melanoma cell growth by inducing autophagy through AMPK activation, and simultaneously initiates apoptosis. We demonstrated that combinatorial treatment of melanoma cells with CQ and siILK has a stronger antitumor effect than monotherapy with either of these. It generates the synergistic antitumor effects by the decrease of translation of both global and oncogenic proteins synthesis. In our work, we point to the crosstalk between translation and autophagy regulation.


2021 ◽  
Vol 22 (14) ◽  
pp. 7511
Author(s):  
Albina Fejza ◽  
Maurizio Polano ◽  
Lucrezia Camicia ◽  
Evelina Poletto ◽  
Greta Carobolante ◽  
...  

The use of immune checkpoint inhibitors has revolutionized the treatment of melanoma patients, leading to remarkable improvements in the cure. However, to ensure a safe and effective treatment, there is the need to develop markers to identify the patients that would most likely respond to the therapies. The microenvironment is gaining attention in this context, since it can regulate both the immunotherapy efficacyand angiogenesis, which is known to be affected by treatment. Here, we investigated the putative role of the ECM molecule EMILIN-2, a tumor suppressive and pro-angiogenic molecule. We verified that the EMILIN2 expression is variable among melanoma patients and is associated with the response to PD-L1 inhibitors. Consistently, in preclinical settings,the absence of EMILIN-2 is associated with higher PD-L1 expression and increased immunotherapy efficacy. We verified that EMILIN-2 modulates PD-L1 expression in melanoma cells through indirect immune-dependent mechanisms. Notably, upon PD-L1 blockage, Emilin2−/− mice displayed improved intra-tumoral vessel normalization and decreased tumor hypoxia. Finally, we provide evidence indicating that the inclusion of EMILIN2 in a number of gene expression signatures improves their predictive potential, a further indication that the analysis of this molecule may be key for the development of new markers to predict immunotherapy efficacy.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2284
Author(s):  
Serena Stamatakos ◽  
Giovanni Luca Beretta ◽  
Elisabetta Vergani ◽  
Matteo Dugo ◽  
Cristina Corno ◽  
...  

Metabolic changes promoting cell survival are involved in metastatic melanoma progression and in the development of drug resistance. In BRAF-inhibitor resistant melanoma cells, we explored the role of FASN, an enzyme involved in lipogenesis overexpressed in metastatic melanoma. Resistant melanoma cells displaying enhanced migratory and pro-invasive abilities increased sensitivity to the BRAF inhibitor PLX4032 upon the molecular targeting of FASN and upon treatment with the FASN inhibitor orlistat. This behavior was associated with a marked apoptosis and caspase 3/7 activation observed for the drug combination. The expression of FASN was found to be inversely associated with drug resistance in BRAF-mutant cell lines, both in a set of six resistant/sensitive matched lines and in the Cancer Cell Line Encyclopedia. A favorable drug interaction in resistant cells was also observed with U18666 A inhibiting DHCR24, which increased upon FASN targeting. The simultaneous combination of the two inhibitors showed a synergistic interaction with PLX4032 in resistant cells. In conclusion, FASN plays a role in BRAF-mutated melanoma progression, thereby creating novel therapeutic opportunities for the treatment of melanoma.


Author(s):  
Richard A. Seidu ◽  
Min Wu ◽  
Zhaoliang Su ◽  
Huaxi Xu

Gliomas represent 60% of primary intracranial brain tumors and 80% of all malignant types, with highest morbidity and mortality worldwide. Although glioma has been extensively studied, the molecular mechanisms underlying its pathology remain poorly understood. Clarification of the molecular mechanisms involved in their development and/or treatment resistance is highly required. High mobility group box 1 protein (HMGB1) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation and migration, through receptor for advanced glycation end products and toll like receptors in a number of cancers including gliomas. It is known that excessive release of HMGB1 in cancer leads to unlimited replicative potential, ability to develop blood vessels (angiogenesis), evasion of programmed cell death (apoptosis), self-sufficiency in growth signals, insensitivity to inhibitors of growth, inflammation, tissue invasion and metastasis. In this review we explore the mechanisms by which HMGB1 regulates apoptosis and autophagy in glioma. We also looked at how HMGB1 mediates glioma regression and promotes angiogenesis as well as possible signaling pathways with an attempt to provide potential therapeutic targets for the treatment of glioma.


2019 ◽  
Vol 20 (23) ◽  
pp. 6017 ◽  
Author(s):  
Prospero Civita ◽  
Diana M. Leite ◽  
Geoffrey Pilkington

The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive “reactive” astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shaimaa A. Gad ◽  
Hamdy E. A. Ali ◽  
Rofaida Gaballa ◽  
Rania M. Abdelsalam ◽  
Mourad Zerfaoui ◽  
...  

Abstract Although the utilization of selective BRAFV600E inhibitors is associated with improved overall survival in patients with metastatic melanoma, a growing challenge of drug resistance has  emerged. CDC7 has been shown to be overexpressed and associated with poor prognosis in various cancers including melanoma. Thus, we aimed to elucidate the biological role of CDC7 in promoting Vemurafenib resistance and the anticipated benefits of dual targeting of BRAFV600E and CDC7 in melanoma cells. We performed exosomes-associated microRNA profiling and functional assays to determine the role of CDC7 in drug resistance using Vemurafenib-sensitive and resistant melanoma cells. Our results demonstrated that Vemurafenib-resistant cells exhibited a persistent expression of CDC7 in addition to prolonged activity of MCM2 compared to drug-sensitive cells. Reconstitution of miR-3613-3p in resistant cells downregulated CDC7 expression and reduced the number of colonies. Treatment of cells with low concentrations of CDC7 inhibitor TAK-931 sensitized resistant cells to Vemurafenib and reduced the number of cell colonies. Taken together, CDC7 overexpression and downregulation of miR-3613-3p were associated with Vemurafenib resistance in BRAFV600E- bearing melanoma cells. Dual targeting of CDC7 and BRAFV600E reduced the development of resistance against Vemurafenib. Further studies are warranted to investigate the clinical effect of targeting CDC7 in metastatic melanoma.


2021 ◽  
Author(s):  
Aiqing Zhao ◽  
Yanbin Zhao ◽  
Wanlin Liu ◽  
Wei Feng ◽  
Wenhua Xing ◽  
...  

Abstract BackgroundOsteosarcoma (OS) is a highly malignant tumor. Improving chemotherapeutic resistance is very important to improve the survival rate of OS. Exosomes and microRNAs (MiRNA) play important roles in the mechanism of chemotherapeutic resistance transmission. More and more researches focus the mechanism of miRNAs carried by exosomes in the transmission of chemotherapeutic resistance of OS. This study focused on exploring the mechanism of exosomal miR-331 in the transmission of chemoresistance in OS.MethodsWe cultured OS drug-resistant cells and extracted exosomes of these cells. The secretion and uptake of exosomes in OS drug-resistant cells and OS cells (OSCs) were confirmed by fluorescence tracking assay and transwell experiments. The differential expression of microRNA-331 (miR-331) in exosomes of OS resistant and OS cells was investigated by RT-PCR. The effects of drug-resistant exosomes on proliferation and migration of OS cells were determined by MTT assay and scratches assay. MDC staining, RT-PCR, and Western blot were used to detect the role of autophagy which regulated by drug-resistant cell-derived exosom-miR-331.ResultsWe found that the expression difference of miR-331 between MG63/CDDP and MG63 was the most significant. Drug resistant OSCs secreted exosomes and were ingested by OSCs, which then promoted OSCs to acquire drug resistance. In addition, exosomes secreted by drug-resistant OSCs promote drug resistance by carrying miRNAs. Interestingly, inhibition of miRNA resulted in reduced drug resistance transmission of exosomes. Finally, we found that the exosomes secreted by drug-resistant OSCs could induce autophagy of OSCs by carrying miR-331, thus making OSCs acquire drug resistance. Inhibition of miR-331 can effectively improve drug resistance of OSCs.ConclusionsChemoresistant OSCs-derived exosomes promote the transmission of drug resistance by carrying miR-331 and inducing autophagy. Inhibition of miR-331 could effectively alleviate drug resistance of OSCs.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1546-1546
Author(s):  
Zijuan Wu ◽  
LEI Fan ◽  
Luqiao Wang ◽  
Hanning Tang ◽  
Yi Miao ◽  
...  

Abstract Objective: Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder that mainly affects the elderly and is characterized by the expansion of small mature B-cells. New targeted drugs, such as the BTK inhibitor ibrutinib, have greatly improved patient survival but have also posed the challenge of drug resistance. The three-dimensional (3D) spatial structure of chromatin is highly dynamic and varies greatly between cell types and developmental stages, with the maintenance of chromatin homeostasis being of major significance in disease prevention. Accumulating evidence has suggested that changes in 3D genomic structures play an important role in cell development and differentiation, disease progression, as well as drug resistance. Nevertheless, the characteristics and functional significance of chromatin conformation in the resistance of CLL to ibrutinib remain unclear. In this study, we aimed to investigate the mechanism underlying ibrutinib resistance through multi-omics profiling, including the study of chromatin conformation. Thus, we would be able to demonstrate the importance of chromatin spatial organization in CLL and highlight the oncogenic factors contributing to CLL development and mediating ibrutinib resistance. Methods: An ibrutinib-resistant cell line was established by exposing cells to increasing doses of ibrutinib. High-throughput chromosome conformation capture (Hi-C), assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), bulk RNA sequencing (RNA-seq), and Tandem Mass Tag (TMT) were performed to explore differences between ibrutinib-resistant and parental cells. Peripheral blood mononuclear cells (PBMCs) from 53 CLL patients were collected for RNA-seq. Mitochondrial respiration and glycolysis were assessed via Seahorse analysis. The growth-inhibitory effects of tested drugs were evaluated via a CCK8 assay, and the combination index (CI), indicating synergy, was calculated using CompuSyn software. Apoptosis was detected via annexin V staining. Results: Between ibrutinib-resistant and parental cells changes in some chromosomes, including chr11 were observed (Figure 1A). p21-activated kinase 1 (PAK1), which is located on chr11 and frequently overexpressed or excessively activated in almost all cancer types and involved in almost every stage of cancer progression, was first explored for its role in CLL progression and drug resistance. The oncogene PAK1 was observed locate in a region where B-to-A compartment switching occurred (Figure 1B). Consistent with the results of ATAC-seq, RNA-seq, and TMT, Hi-C analysis revealed a transcriptional upregulation of PAK1 in ibrutinib-resistant CLL cells (Figure 1C). Functional analysis demonstrated that PAK1 overexpression significantly promoted cell proliferation, while knockdown markedly suppressed cell viability (Figure 1D). Cell viability assays indicated that the depletion of PAK1 increased ibrutinib sensitivity (Figure 1E). In addition, PAK1 positively regulates glycolysis and oxidative phosphorylation in CLL cells (Figure 1F and G). To verify the results of sequencing and further explore the role of PAK1 in CLL, B-cells from healthy volunteers and PBMCs from CLL patients were collected. The level of PAK1 mRNA expression was significantly higher in CLL primary cells than in B-cells from healthy volunteers (Figure 1H). Kaplan-Meier survival analysis of qRT-PCR data confirmed that patients with high PAK1 expression had a significantly lower OS (Figure 1I). IPA-3, the small molecular inhibitor of PAK1 suppressed the proliferation of ibrutinib-resistant and parental CLL cells in a dose-dependent manner. The combination of IPA-3 and ibrutinib exerted potent cell growth inhibition (Figure 1J), and the combination index (CI) calculated using the CompuSyn software confirmed the synergistic effect (CI<1) of this combinatorial therapy (Figure 1K). Conclusions: In the current study, we have provided a genome-wide view of alterations in 3D chromatin organization between ibrutinib-resistant and parental CLL cells and confirmed the oncogenic role of PAK1 in CLL. Most importantly, our research provides promising therapeutic targets for overcoming ibrutinib resistance. In particular, the treatment of CLL patients with a combination of IPA-3 and ibrutinib may improve clinical outcomes. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5457
Author(s):  
Ryota Tanaka ◽  
Mizue Terai ◽  
Eric Londin ◽  
Takami Sato

Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (MET) signaling promotes tumorigenesis and tumor progression in various types of cancer, including uveal melanoma (UM). The roles of HGF/MET signaling have been studied in cell survival, proliferation, cell motility, and migration. Furthermore, HGF/MET signaling has emerged as a critical player not only in the tumor itself but also in the tumor microenvironment. Expression of MET is frequently observed in metastatic uveal melanoma and is associated with poor prognosis. It has been reported that HGF/MET signaling pathway activation is the major mechanism of treatment resistance in metastatic UM (MUM). To achieve maximal therapeutic benefit in MUM patients, it is important to understand how MET signaling drives cellular functions in uveal melanoma cells. Here, we review the HGF/MET signaling biology and the role of HGF/MET blockades in uveal melanoma.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3366
Author(s):  
Ewa Aladowicz ◽  
Letizia Granieri ◽  
Federica Marocchi ◽  
Simona Punzi ◽  
Giuseppina Giardina ◽  
...  

Metastases are the primary cause of cancer-related deaths. The underlying molecular and biological mechanisms remain, however, elusive, thus preventing the design of specific therapies. In melanomas, the metastatic process is influenced by the acquisition of metastasis-associated mutational and epigenetic traits and the activation of metastatic-specific signaling pathways in the primary melanoma. In the current study, we investigated the role of an adaptor protein of the Shc family (ShcD) in the acquisition of metastatic properties by melanoma cells, exploiting our cohort of patient-derived xenografts (PDXs). We provide evidence that the depletion of ShcD expression increases a spread cell shape and the capability of melanoma cells to attach to the extracellular matrix while its overexpression switches their morphology from elongated to rounded on 3D matrices, enhances cells’ invasive phenotype, as observed on collagen gel, and favors metastasis formation in vivo. ShcD overexpression sustains amoeboid movement in melanoma cells, by suppressing the Rac1 signaling pathway through the confinement of DOCK4 in the cytoplasm. Inactivation of the ShcD signaling pathway makes melanoma cells more sensitive to therapeutic treatments. Consistently, ShcD expression predicts poor outcome in a cohort of 183 primary melanoma patients.


Sign in / Sign up

Export Citation Format

Share Document