scholarly journals JPTQ Decoction Inhibits Tumor Proliferation and Lung Metastasis in Tumor-bearing Mice with Triple Negative Breast Cancer

Author(s):  
Jin Zhang ◽  
Biyu Cai ◽  
Chenxiao Ye ◽  
Xinrong Li ◽  
Haitao Chen ◽  
...  

Abstract Background. With the increasing incidence of breast cancer and the integration of multiple methods in the treatment, traditional Chinese medicine plays an increasingly important role in the comprehensive treatment of breast cancer. we aimed to determine the anti-cancer metastasis effect of Jianpi Tiaoqi Decoction (JPTQ) on breast cancer-bearing mice by monitoring the effects of its on tumor proliferation, apoptosis, angiogenesis, epithelial to mesenchymal transition (EMT) process and regulation of immune microenvironment. Methods. The general phenotype of the Cancer-bearing mice was monitored. Bioluminescence-imaging was performed to assess the tumor status and the metastatic status of other organs. We investigated its mechanism of the effect through transcriptome analysis, Flow Cytometry(FCM) was used to analyze peripheralblood CD4+ T cells, spleen T helper 1 (Th1) cell, the proportion of MDSCs in lung. The changes of EMT process, vascular endothelial growth factor (VEGF) and Ki-67, Caspase-3 and Bcl-2 were detected by quantitative real time polymerase chain reaction (q-PCR), western blot (WB) or immunohistochemistry (IHC). Results. JPTQ inhibited the tumors proliferation and reduced lung metastasis. The transcriptome analysis of lung and tumor tissues indicated that EMT-related genes, angiogenesis, proliferation and apoptosis genes were regulated in JPTQ group, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis observed enrichment of immune-related pathways. FCM suggested that JPTQ could reduced the proportion of M-MDSCs in the lung, and increased peripheral blood CD4+ T cells and Th1 cells in spleen. The q-PCR, WB or IHC assay demonstrated that E-cadherin was up-regulated in lung and tumor tissue, and Snail was down-regulated, the expression of matrix metalloprotein-9(MMP-9)was down-regulated in lung tissue. IHC showed the down-regulation of Ki67 and VEGF in lung and tumo tissues. WB found that Cleved-Caspase3 was significantly up-regulated, while Bcl-2 was down-regulated. Conclution. JPTQ can inhibit proliferation, angiogenesis, promote apoptosis and improve the immune microenvironment, and reverse the EMT process to inhibit the proliferation and metastasis of TNBC.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Li ◽  
Shengqi Wang ◽  
Neng Wang ◽  
Yifeng Zheng ◽  
Bowen Yang ◽  
...  

Abstract Background Metastasis represents the leading cause of death in patients with breast cancer. Traditional Chinese medicine is particularly appreciated for metastatic diseases in Asian countries due to its benefits for survival period prolongation and immune balance modulation. However, the underlying molecular mechanisms remain largely unknown. This study aimed to explore the antimetastatic effect and immunomodulatory function of a clinical formula Aiduqing (ADQ). Methods Naive CD4+ T cells, regulatory T cells (Tregs), and CD8+ T cells were sorted by flow cytometry. Then, breast cancer cells and these immune cells were co-cultured in vitro or co-injected into mice in vivo to simulate their coexistence. Flow cytometry, ELISA, qPCR, double luciferase reporter gene assay, and chromatin immunoprecipitation assay were conducted to investigate the immunomodulatory and antimetastatic mechanisms of ADQ. Results ADQ treatment by oral gavage significantly suppressed 4T1-Luc xenograft growth and lung metastasis in the orthotopic breast cancer mouse model, without noticeable hepatotoxicity, nephrotoxicity, or hematotoxicity. Meanwhile, ADQ remodeled the immunosuppressive tumor microenvironment (TME) by increasing the infiltration of tumor-infiltrating lymphocytes (TILs) and cytotoxic CD8+ T cells, and decreasing the infiltration of Tregs, naive CD4+ T cells, and tumor-associated macrophages (TAMs). Molecular mechanism studies revealed that ADQ remarkably inhibited CXCL1 expression and secretion from TAMs and thus suppressed the chemotaxis and differentiation of naive CD4+ T cells into Tregs, leading to the enhanced cytotoxic effects of CD8+ T cells. Mechanistically, TAM-derived CXCL1 promoted the differentiation of naive CD4+ T cells into Tregs by transcriptionally activating the NF-κB/FOXP3 signaling. Lastly, mouse 4T1-Luc xenograft experiments validated that ADQ formula inhibited breast cancer immune escape and lung metastasis by suppressing the TAM/CXCL1/Treg pathway. Conclusions This study not only provides preclinical evidence supporting the application of ADQ in inhibiting breast cancer metastasis but also sheds novel insights into TAM/CXCL1/NF-κB/FOXP3 signaling as a promising therapeutic target for Treg modulation and breast cancer immunotherapy.


2020 ◽  
Author(s):  
Shunhao Wang ◽  
Jingchao Li ◽  
Mei Chen ◽  
Liting Ren ◽  
Wenya Feng ◽  
...  

ABSTRACT Metastasis accounts for the majority of cancer deaths in many tumor types including breast cancer. Epithelial-mesenchymal transition (EMT) is the driving force for the occurrence and progression of metastasis, however, no targeted strategies to block the EMT program are currently available to combat metastasis. Diverse engineered nanomaterials (ENMs) have been reported to exert promising anti-cancer effects, however, no ENMs have been designed to target EMT. Palladium (Pd) nanomaterials, a type of ENM, have received substantial attention in nanomedicine due to their favorable photothermal performance for cancer therapeutics. Herein, Pd nanoplates (PdPL) were found to be preferentially biodistributed to both primary tumors and metastatic tumors. Importantly, PdPL showed a significant inhibition of lung metastasis with and without near-infrared (NIR) irradiation. Mechanistic investigations revealed that EMT was significantly compromised in breast cancer cells upon the PdPL treatment, which was partially due to the inhibition of the transforming growth factor-beta (TGF-β) signaling. Strikingly, the PdPL was found to directly interact with TGF-β proteins to diminish TGF-β functions in activating its downstream signaling, as evidenced by the reduced phosphorylation of Smad2. Notably, TGF-β-independent pathways were also involved in undermining EMT and other important biological processes that are necessary for metastasis. Additionally, NIR irradiation elicited synergistic effects on PdPL-induced inhibition of primary tumors and metastasis. In summary, these results revealed that the PdPL remarkably curbed metastasis by inhibiting EMT signaling, thereby indicating the promising potential of PdPL as a therapeutic agent for treating breast cancer metastasis.


2020 ◽  
Vol 20 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Fang Peng ◽  
Chuansheng Yang ◽  
Yanan Kong ◽  
Xiaojia Huang ◽  
Yanyu Chen ◽  
...  

Background: CDK12 is a promising therapeutic target in breast cancer with an effective ability of maintaining cancer cell stemness. Objective: We aim to investigate the mechanism of CDK12 in maintaining breast cancer stemness. Methods: CDK12 expression level was accessed by using RT-qPCR and IHC. CDK12-altered breast cancer cell lines MDA-MB-231-shCDK12 and SkBr-3-CDK12 were then established. CCK8, colony formation assays, and xenograft model were used to value the effect of CDK12 on tumorigenicity. Transwell assay, mammosphere formation, FACS, and lung metastasis model in vivo were determined. Western blot further characterized the mechanism of CDK12 in breast cancer stemness through the c-myc/β-catenin pathway. Results: Our results showed a higher level of CDK12 exhibited in breast cancer samples. Tumor formation, cancer cell mobility, spheroid forming, and the epithelial-mesenchymal transition will be enhanced in the CDK12high group. In addition, CDK12 was associated with lung metastasis and maintained breast cancer cell stemness. CDK12high cancer cells presented higher tumorigenicity and a population of CD44+ subset compared with CDK12low cells. Our study demonstrated c-myc positively expressed with CDK12. The c-myc/β-catenin signaling was activated by CDK12, which is a potential mechanism to initiate breast cancer stem cell renewal and may serve as a potential biomarker of breast cancer prognosis. Conclusion: CDK12 overexpression promotes breast cancer tumorigenesis and maintains the stemness of breast cancer by activating c-myc/β-catenin signaling. Inhibiting CDK12 expression may become a potential therapy for breast cancer.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3644
Author(s):  
Daeun You ◽  
Yisun Jeong ◽  
Sun Young Yoon ◽  
Sung A Kim ◽  
Eunji Lo ◽  
...  

Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.


2019 ◽  
Vol 5 (4) ◽  
pp. 53 ◽  
Author(s):  
Xiao ◽  
Humphries ◽  
Yang ◽  
Wang

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that downregulate target gene expression by imperfect base-pairing with the 3′ untranslated regions (3′UTRs) of target gene mRNAs. MiRNAs play important roles in regulating cancer cell proliferation, stemness maintenance, tumorigenesis, cancer metastasis, and cancer therapeutic resistance. While studies have shown that dysregulation of miRNA-205-5p (miR-205) expression is controversial in different types of human cancers, it is generally observed that miR-205-5p expression level is downregulated in breast cancer and that miR-205-5p exhibits a tumor suppressive function in breast cancer. This review focuses on the role of miR-205-5p dysregulation in different subtypes of breast cancer, with discussions on the effects of miR-205-5p on breast cancer cell proliferation, epithelial–mesenchymal transition (EMT), metastasis, stemness and therapy-resistance, as well as genetic and epigenetic mechanisms that regulate miR-205-5p expression in breast cancer. In addition, the potential diagnostic and therapeutic value of miR-205-5p in breast cancer is also discussed. A comprehensive list of validated miR-205-5p direct targets is presented. It is concluded that miR-205-5p is an important tumor suppressive miRNA capable of inhibiting the growth and metastasis of human breast cancer, especially triple negative breast cancer. MiR-205-5p might be both a potential diagnostic biomarker and a therapeutic target for metastatic breast cancer.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Tetsu Hayashida ◽  
Hiromitsu Jinno ◽  
Yuko Kitagawa ◽  
Masaki Kitajima

Epithelial-mesenchymal transition (EMT) is a multistep process in which cells acquire molecular alterations such as loss of cell-cell junctions and restructuring of the cytoskeleton. There is an increasing understanding that this process may promote breast cancer progression through promotion of invasive and metastatic tumor growth. Recent observations imply that there may be a cross-talk between EMT and cancer stem cell properties, leading to enhanced tumorigenicity and the capacity to generate heterogeneous tumor cell populations. Here, we review the experimental and clinical evidence for the involvement of EMT in cancer stem cell theory, focusing on the common characteristics of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document