scholarly journals Comparative plant biochemistry and soil biology of wild and cultivated cotton species

Author(s):  
Ritika Rajendra Waghmare ◽  
Kulandaivelu Velmourougane ◽  
Desouza Blaise ◽  
Lalita Rameshwar Harinkhede ◽  
Pranali Tarachand Bansod ◽  
...  

Abstract Purpose No attempts were made to analyze the diversity in soil and plant biology of wild cotton species (WCS) and cultivated cotton species (CCS), so far. Our study aimed to understand the differences in soil biological, plant biochemistry, and defense enzyme activities among the ten WCS and four CCS. Methods We studied the differences in soil biology, plant biochemistry, and defense enzyme activities among the ten WCS (Gossypium anomalum, G. aridum, G. australe, G. barbosanum, G. capitis-virides, G. davidsonii, G. raimondii, G. somalense, G. stocksii, G. thurberi) and four CCS (G. arboreum, G. herbaceum, G. hirsutum, and G. barbadense). Results CCS had 11%, 2%, and 10% higher soil respiration rate, microbial biomass carbon, and microbial metabolic quotient, respectively, compared to WCS. While, WCS had 45%, 15%, and 5% higher glomalin, soil polysaccharide, proteins, respectively, compared to CCS. WCS had 45%, 13%, 8%, and 13% higher acid and alkaline phosphatase, β-glucosidase, and soil dehydrogenase activities, respectively, compared to CCS. WCS had higher carbohydrates in the shoot (40%) and root (27%), while, CCS recorded higher proteins in the shoot (13%) and root (13%). WCS had significantly higher polyphenol oxidase (4% and 15%), peroxidase (30% and 31%), and catalase (36% and 31%) activities in shoots and root tissues, respectively, compared with CCS, while, WCS had higher phenol concentrations (4%) than CCS. Conclusion Our study suggests that the difference in soil biological, plant biochemistry, and defense enzyme activities among the WCS and CCS can be attributed to the inherent genetic makeup, which influences consequent plant and soil attributes.

Author(s):  
Corrinne E Grover ◽  
Daojun Yuan ◽  
Mark A Arick ◽  
Emma R Miller ◽  
Guanjing Hu ◽  
...  

Abstract Cotton is an important textile crop whose gains in production over the last century have been challenged by various diseases. Because many modern cultivars are susceptible to several pests and pathogens, breeding efforts have included attempts to introgress wild, naturally resistant germplasm into elite lines. Gossypium stocksii is a wild cotton species native to Africa, which is part of a clade of vastly understudied species. Most of what is known about this species comes from pest resistance surveys and/or breeding efforts, which suggests that G. stocksii could be a valuable reservoir of natural pest resistance. Here we present a high-quality de novo genome sequence for G. stocksii. We compare the G. stocksii genome with resequencing data from a closely related, understudied species (G. somalense) to generate insight into the relatedness of these cotton species. Finally, we discuss the utility of the G. stocksii genome for understanding pest resistance in cotton, particularly resistance to cotton leaf curl virus.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8531 ◽  
Author(s):  
Yulu Zhang ◽  
Dong Cui ◽  
Haijun Yang ◽  
Nijat Kasim

Background A wetland is a special ecosystem formed by the interaction of land and water. The moisture content variation will greatly affect the function and structure of the wetland internal system. Method In this paper, three kinds of wetlands with different flooding levels (Phragmites australis wetland (long-term flooding), Calamagrostis epigeios wetland(seasonal flooding) and Ditch millet wetland (rarely flooded)) in Ili Valley of Xinjiang China were selected as research areas. The changes of microbial biomass carbon, soil physical and chemical properties in wetlands were compared, and redundancy analysis was used to analyze the correlation between soil physical and chemical properties, microbial biomass carbon and enzyme activities (soil sucrase, catalase, amylase and urease). The differences of soil enzyme activities and its influencing factors under different flooding conditions in Ili Valley were studied and discussed. Result The results of this study were the following: (1) The activities of sucrase and amylase in rarely flooded wetlands and seasonally flooded wetlands were significantly higher than those in long-term flooded wetlands; the difference of catalase activity in seasonal flooded wetland was significant and the highest. (2) Redundancy analysis showed that soil organic carbon, dissolved organic carbon, total phosphorus and soil microbial biomass carbon had significant effects on soil enzyme activity (p < 0.05). (3) The correlation between soil organic carbon and the sucrase activity, total phosphorus and the catalase activity was the strongest; while soil organic carbon has a significant positive correlation with invertase, urease and amylase activity, with a slight influence on catalase activity. The results of this study showed that the content of organic carbon, total phosphorus and other soil fertility factors in the soil would be increased and the enzyme activity would be enhanced if the flooding degree was changed properly.


2012 ◽  
Vol 92 (3) ◽  
pp. 419-428 ◽  
Author(s):  
X. H. Li ◽  
X. Z. Han ◽  
H. B. Li ◽  
C. Song ◽  
J. Yan ◽  
...  

Li, X. H., Han, X. Z., Li, H. B., Song, C., Yan, J. and Liang, Y. 2012. Soil chemical and biological properties affected by 21-year application of composted manure with chemical fertilizers in a Chinese Mollisol. Can. J. Soil Sci. 92: 419–428. The effects of 21-yr of application of chemical fertilizers, composted pig manure (CPM) alone, and chemical fertilizers combined with compost on soil chemical and biological properties were investigated. Soil samples (0–20cm) were collected from a long-term fertilization experiment under corn (Zea mays L.) production in 2006, prior to seeding, at the corn tasseling stage and following harvest. Fertilizer treatments were: no fertilizer (CK), nitrogen fertilizer alone (N), N + phosphorus (NP), N + P + potassium (NPK), CPM, N + CPM, N + P + CPM (NP + CPM), and N + P + K + CPM (NPK + CPM). Long-term application of N alone resulted in a reduction of soil pH by 0.38 units and reduced the available P concentration compared with CK. An increase in soil pH was seen with CPM alone and NPK + CPM. Both fertilizers sources, singly and combined, increased the total N and available N concentrations. Total P and total K concentrations were greatest with the NPK + CPM treatment. All fertilizer treatments increased the soil organic carbon (SOC), light fraction organic carbon (LFOC) and microbial biomass carbon (MBC) concentrations significantly (P < 0.05) at the tasseling stage. The NPK + CPM treatment showed the greatest increase in SOC (12%), LFOC (78%) and MBC (44%) concentrations, compared with CK. Soil enzyme activities (invertase, urease, acid and alkaline phosphatases) tended to be greater at tasseling than other sampling dates, with highest enzyme activities in the NPK + CPM treatments. These findings suggest that a long-term application of CPM combined with NPK is an efficient strategy to maintain or increase soil quality in Mollisols for sustainable agriculture.


2001 ◽  
Vol 28 (10) ◽  
pp. 1013 ◽  
Author(s):  
Jianmin Guo ◽  
William A. Jermyn ◽  
Matthew H. Turnbull

To assess the relative importance of sucrose-cleaving enzymes in the regulation of carbon accumulation in developing asparagus spears (growing shoots), we investigated spear elongation, carbohydrate accumulation and enzyme activities of acid invertase (AI), neutral invertase (NI) and sucrose synthase (SS) in two asparagus (Asparagus officinalis L.) cultivars with contrasting yield. The greater elongation rate measured in the high-yielding cultivar ASP-69 was associated with a significantly higher hexose accumulation (P < 0.05) in spear tissue in comparison with the low-yielding cultivar ASP-03. However, sucrose content was similar in the two cultivars, suggesting a more efficient machinery for transport and catalysis of carbohydrate in spears of ASP-69. Biochemical evidence indicated that the greater elongation rate in ASP-69 was associated with a significantly higher AI activity (P < 0.05) in the elongation zone, whereas SS activity was not significantly different between the two cultivars. There was little NI activity detected in either cultivar. These results strongly suggest that it is AI, and not SS or NI, that is an important determinant of the difference in sucrose metabolism between the two asparagus cultivars in metabolising imported sucrose in the elongation region, which in turn plays a part in regulating the import of sucrose into spear tissue. The profile of sucrose-cleaving enzyme activities along spear sections indicated that SS was the dominant enzyme in both the tip and base of spears, whereas AI was the dominant enzyme in the elongation zone. Apart from sucrose-cleaving enzymes, the associated biochemical processes for structure and component synthesis in spear tissues also contributed to the regulation of carbohydrate accumulation. It is most likely that carbohydrate metabolism in the developing spears is a whole spear property influenced by sucrose degradation (AI and SS activity) and its utilisation in building spear structure and storage materials. The overall data substantiate the conclusion that changes in the activity of sucrose-cleaving enzymes are correlated with sink functions in developing spears.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 413 ◽  
Author(s):  
Katarzyna Głowacka ◽  
Anna Źróbek-Sokolnik ◽  
Adam Okorski ◽  
Janusz Najdzion

The analysis of the effects of cadmium (Cd) on plant cells is crucial to understand defense mechanisms and adaptation strategies of plants against Cd toxicity. In this study, we examined stress-related enzyme activities after one and seven days of Cd application and the ultrastructure of roots of Pisum sativum L. after seven days of Cd treatment (10, 50, 100, and 200 μM CdSO4). Our results showed that phenylalanine ammonia-lyase (PAL) activity and the amount of Cd accumulated in the roots were significantly positively correlated with the Cd concentration used in our experiment. However, Cd caused a decrease of all studied antioxidative enzyme activities (i.e., catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX)). The analysis of the ultrastructure (TEM) showed various responses to Cd, depending on Cd concentrations. In general, lower Cd concentrations (50 and 100 μM CdSO4) mostly resulted in increased amounts of oil bodies, plastolysomes and the accumulation of starch granules in plastids. Meanwhile, roots treated with a higher concentration of Cd (200 μM CdSO4) additionally triggered protective responses such as an increased deposition of suberin lamellae in the endodermal cell walls. This indicates that Cd induces a complex defense response in root tissues.


Sign in / Sign up

Export Citation Format

Share Document