scholarly journals Small RNA and Degradome Analyses Uncovering the Extensive Effects of miRNAs and Targets in Early Developing Grains of Common Wheat

Author(s):  
Qiaoyan Chen ◽  
Lina Xu ◽  
Yuanyuan Guan ◽  
Zeeshan Ali Buttar ◽  
Gan Li ◽  
...  

Abstract Background: The development of grains is important for wheat production, and wheat (Triticum aestivum) is one of the staple food crops worldwide. MicroRNAs (miRNAs), as a kind of small regulatory RNAs, play important roles during plant growth and development. Although the development of plant grain/seed is widely researched, there is limited knowledge on miRNAs’s regulation of early developing wheat grains. Results: In the present study, miRNAs and their targets were explored in early developing grains of wheat cultivar “Bainong 4199” at 7DAP and 14 DAP using high-throughput small RNA and degradome sequencing. A total of 105 known and 79 novel miRNAs were identified, including 46 known and 32 novel miRNAs from 7 DAP library and 87 known and 78 novel miRNAs from 14 DAP library, respectively. Expression analysis of miRNAs revealed that 39 miRNAs including 19 known and 20 novel miRNAs were differentially expressed between 7 DAP and 14 DAP. In total, 266 targets for 40 known wheat miRNAs, 152 targets for 13 other known plant miRNAs and 258 targets for 25 novel miRNAs were predicted across small RNA and degradome analyses. For differentially expressed miRNAs, 23 targets were predicted to be cleaved by 7 miRNAs, including 3 known and 4 novel miRNAs. Majority of the miRNAs potentially regulated multiple targets, whereas some miRNAs only acted on a single target gene. Functional analyses showed that miRNAs and their targets widely participated in the regulations of early wheat grain development and metabolism. The expression patterns of the randomly selected miRNAs and targets were validated using quantitative real-time polymerase chain reaction, and showed consistent and reliable results. Conclusion: This study suggests that quite a few known and novel miRNAs and their targets play extensive roles during the early grain development of common wheat. Understanding of miRNA-mediated regulatory network involved in wheat grain development will help us to elucidate the molecular mechanisms underlying wheat grain development and carry out ingenious molecular improvements in wheat breeding.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Songbai Yang ◽  
Xiaolong Zhou ◽  
Yue Pei ◽  
Han Wang ◽  
Ke He ◽  
...  

Estrus is an important factor for the fecundity of sows, and it is involved in ovulation and hormone secretion in ovaries. To better understand the molecular mechanisms of porcine estrus, the expression patterns of ovarian mRNA at proestrus and estrus stages were analyzed using RNA sequencing technology. A total of 2,167 differentially expressed genes (DEGs) were identified (P≤0.05, log2  Ratio≥1), of which 784 were upregulated and 1,383 were downregulated in the estrus compared with the proestrus group. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the cellular process, single-organism process, cell and cell part, and binding and metabolic process. In addition, a pathway analysis showed that these DEGs were significantly enriched in 33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including cell adhesion molecules, ECM-receptor interaction, and cytokine-cytokine receptor interaction. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) confirmed the differential expression of 10 selected DEGs. Many of the novel candidate genes identified in this study will be valuable for understanding the molecular mechanisms of the sow estrous cycle.


2019 ◽  
Vol 20 (10) ◽  
pp. 2391 ◽  
Author(s):  
Jiayang Xu ◽  
Qiansi Chen ◽  
Pingping Liu ◽  
Wei Jia ◽  
Zheng Chen ◽  
...  

Salinity is one of the most severe forms of abiotic stress and affects crop yields worldwide. Plants respond to salinity stress via a sophisticated mechanism at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks involved in salt and alkali tolerance have not yet been elucidated. We developed an RNA-seq technique to perform mRNA and small RNA (sRNA) sequencing of plants under salt (NaCl) and alkali (NaHCO3) stress in tobacco. Overall, 8064 differentially expressed genes (DEGs) and 33 differentially expressed microRNAs (DE miRNAs) were identified in response to salt and alkali stress. A total of 1578 overlapping DEGs, which exhibit the same expression patterns and are involved in ion channel, aquaporin (AQP) and antioxidant activities, were identified. Furthermore, genes involved in several biological processes, such as “photosynthesis” and “starch and sucrose metabolism,” were specifically enriched under NaHCO3 treatment. We also identified 15 and 22 miRNAs that were differentially expressed in response to NaCl and NaHCO3, respectively. Analysis of inverse correlations between miRNAs and target mRNAs revealed 26 mRNA-miRNA interactions under NaCl treatment and 139 mRNA-miRNA interactions under NaHCO3 treatment. This study provides new insights into the molecular mechanisms underlying the response of tobacco to salinity stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ren-qiang Yu ◽  
Min Wang ◽  
Shan-yu Jiang ◽  
Ying-hui Zhang ◽  
Xiao-yu Zhou ◽  
...  

Necrotizing enterocolitis (NEC) is the leading cause of death due to gastrointestinal disease in preterm infants. The role of miRNAs in NEC is still unknown. The objective of this study was to identify differentially expressed (DE) miRNAs in rats with NEC and analyze their possible roles. In this study, a NEC rat model was established using Sprague-Dawley rat pups. Small RNA sequencing was used to analyze the miRNA expression profiles in the NEC and control rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to identify target mRNAs for the DE miRNAs and to explore their potential roles. The DE miRNAs were verified by real-time quantitative PCR (RT-qPCR). The status of intestinal injury and the elevated levels of inflammatory cytokines in the NEC group confirmed that the NEC model was successfully established. The 16 miRNAs were found to be differentially expressed between the NEC group and the control group of rats. Bioinformatics analysis indicated that the parental genes of the DE miRNAs were predominantly implicated in the phosphorylation, cell migration, and protein phosphorylation processes. Moreover, the DE miRNAs were mainly found to be involved in the pathways of axon guidance, endocytosis, and focal adhesion, as well as in the Wnt signaling pathway, which is related to colitis. The expression patterns of the candidate miRNAs (rno-miR-27a-5p and rno-miR-187-3p), as assessed by RT-qPCR, were in accordance with the expression patterns obtained by miRNA-sequencing. The miRNA/mRNA/pathway network revealed that rno-miR-27a-5p and rno-miR-187-3p might be involved in NEC via the Wnt signaling pathway. We found an altered miRNA expression pattern in rats with NEC. We hypothesize that rno-miR-27a-5p and rno-miR-187-3p might mediate the NEC pathophysiological processes via the Wnt signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Liang ◽  
Kunhua Wei ◽  
Fan Wei ◽  
Shuangshuang Qin ◽  
Chuanhua Deng ◽  
...  

Abstract Background Sophora tonkinensis Gagnep is a traditional Chinese medical plant that is mainly cultivated in southern China. Drought stress is one of the major abiotic stresses that negatively impacts S. tonkinensis growth. However, the molecular mechanisms governing the responses to drought stress in S. tonkinensis at the transcriptional and posttranscriptional levels are not well understood. Results To identify genes and miRNAs involved in drought stress responses in S. tonkinensis, both mRNA and small RNA sequencing was performed in root samples under control, mild drought, and severe drought conditions. mRNA sequencing revealed 66,476 unigenes, and the differentially expressed unigenes (DEGs) were associated with several key pathways, including phenylpropanoid biosynthesis, sugar metabolism, and quinolizidine alkaloid biosynthesis pathways. A total of 10 and 30 transcription factors (TFs) were identified among the DEGs under mild and severe drought stress, respectively. Moreover, small RNA sequencing revealed a total of 368 miRNAs, including 255 known miRNAs and 113 novel miRNAs. The differentially expressed miRNAs and their target genes were involved in the regulation of plant hormone signal transduction, the spliceosome, and ribosomes. Analysis of the regulatory network involved in the response to drought stress revealed 37 differentially expressed miRNA-mRNA pairs. Conclusion This is the first study to simultaneously profile the expression patterns of mRNAs and miRNAs on a genome-wide scale to elucidate the molecular mechanisms of the drought stress responses of S. tonkinensis. Our results suggest that S. tonkinensis implements diverse mechanisms to modulate its responses to drought stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Shi ◽  
Wei Jiao ◽  
Lan Yun ◽  
Zhiqiang Zhang ◽  
Xiujuan Zhang ◽  
...  

Drought is a major limiting factor in foraging grass yield and quality. Medicago ruthenica (M. ruthenica) is a high-quality forage legume with drought resistance, cold tolerance, and strong adaptability. In this study, we integrated transcriptome, small RNA, and degradome sequencing in identifying drought response genes, microRNAs (miRNAs), and key miRNA-target pairs in M. ruthenica under drought and rewatering treatment conditions. A total of 3,905 genes and 50 miRNAs (45 conserved and 5 novel miRNAs) were significantly differentially expressed in three test conditions (CK: control, DS: plants under drought stress, and RW: plants rewatering after drought stress). The degradome sequencing (AllenScore < 4) analysis revealed that 104 miRNAs (11 novel and 93 conserved miRNAs) were identified with 263 target transcripts, forming 296 miRNA-target pairs in three libraries. There were 38 differentially expressed targets from 16 miRNAs in DS vs. CK, 31 from 11 miRNAs in DS vs. RW, and 6 from 3 miRNAs in RW vs. CK; 21, 18, and 3 miRNA-target gene pairs showed reverse expression patterns in DS vs. CK, DS vs. RW, and RW vs. CK comparison groups, respectively. These findings provide valuable information for further functional characterization of genes and miRNAs in response to abiotic stress, in general, and drought stress in M. ruthenica, and potentially contribute to drought resistance breeding of forage in the future.


2020 ◽  
Author(s):  
Tao Xie ◽  
Zhiquan Cai ◽  
Aiping Luan ◽  
Wei Zhang ◽  
Jing Wu ◽  
...  

Abstract Background: Pineapple plant usually has a capitulum. However, a fan-shaped inflorescence was evolved in an exceptional material, having multiple crown buds. In order to reveal the molecular mechanisms of the formation of the fan-shaped inflorescence, fruit traits and the transcriptional differences between a fan-shaped inflorescence (FI) and a capitulum inflorescence (CI) pineapples were analyzed in the three tissues, i.e., the flower stem apex (FIs and CIs), the base of the inflorescence (FIb and CIb), and the inflorescence axis (FIa and CIa).Results: Except for a clear differentiation of inflorescence morphology, no significant differences in the structure of inflorescence organs and the main nutritional components (soluble solids, soluble sugar, titratable acid, and VC) in fruits were found between the two pineapples. Between the fan- and capitulum-shaped inflorescences, a total of 5370 differentially expressed genes (DEGs) were identified across the three tissues; and 3142, 2526 and 2255 DEGs were found in the flower stem apex, the base of the inflorescence, and the inflorescence axis, respectively. Of these genes, there were 489 overlapping DEGs in all three tissue comparisons. In addition, 5769 DEGs were identified between different tissues within each pineapple. Functional analysis indicated between the two pineapples that 444 transcription factors (TFs) and 206 inflorescence development related genes (IDGs) were differentially expressed in at least one tissue comparison, while 45 TFs and 21 IDGs were overlapped across the 3 tissues. Among the 489 overlapping DEGs in the 3 tissue comparisons between the two pineapples, excluding the IDGs and TFs, 80 of them revealed a higher percentage of involvement in the biological processes relating to response to auxin, and reproductive processes. RNA-seq value and real-time quantitative PCR analysis exhibited the same gene expression patterns in the three tissues. Conclusions: Our result provided novel cues for understanding the molecular mechanisms of the formation of fan-shaped inflorescence in pineapple, making a valuable resource for the study of plant breeding and the speciation of the pineapples.


2019 ◽  
Vol 20 (23) ◽  
pp. 5903 ◽  
Author(s):  
Preethi Krishnan ◽  
Farooq Syed ◽  
Nicole Jiyun Kang ◽  
Raghavendra G. Mirmira ◽  
Carmella Evans-Molina

Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of insulin-producing islet β cells. Biomarkers capable of identifying T1D risk and dissecting disease-related heterogeneity represent an unmet clinical need. Toward the goal of informing T1D biomarker strategies, we profiled coding and noncoding RNAs in human islet-derived exosomes and identified RNAs that were differentially expressed under proinflammatory cytokine stress conditions. Human pancreatic islets were obtained from cadaveric donors and treated with/without IL-1β and IFN-γ. Total RNA and small RNA sequencing were performed from islet-derived exosomes to identify mRNAs, long noncoding RNAs, and small noncoding RNAs. RNAs with a fold change ≥1.3 and a p-value <0.05 were considered as differentially expressed. mRNAs and miRNAs represented the most abundant long and small RNA species, respectively. Each of the RNA species showed altered expression patterns with cytokine treatment, and differentially expressed RNAs were predicted to be involved in insulin secretion, calcium signaling, necrosis, and apoptosis. Taken together, our data identify RNAs that are dysregulated under cytokine stress in human islet-derived exosomes, providing a comprehensive catalog of protein coding and noncoding RNAs that may serve as potential circulating biomarkers in T1D.


2016 ◽  
Vol 4 (2) ◽  
pp. 92-106 ◽  
Author(s):  
Yonglong Yu ◽  
Dong Zhu ◽  
Chaoying Ma ◽  
Hui Cao ◽  
Yaping Wang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shihua Wang ◽  
Xiaoxia Li ◽  
Robert Chunhua Zhao

Mesenchymal stem cells (MSCs) possess great immunomodulatory capacity which lays the foundation for their therapeutic effects in a variety of diseases. Recently, toll-like receptors (TLR) have been shown to modulate MSC functions; however, the underlying molecular mechanisms are poorly understood. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are an important class of regulators involved in a wide range of biological processes. To explore the potential involvement of lncRNAs in TLR stimulated MSCs, we performed a comprehensive lncRNA and mRNA profiling through microarray. 10.2% of lncRNAs (1733 out of 16967) and 15.1% of mRNA transcripts (1760 out of 11632) were significantly differentially expressed (absolute fold-change≥5 ,Pvalue≤0.05) in TLR3 stimulated MSCs. Furthermore, we characterized the differentially expressed lncRNAs through their classes and length distribution and correlated them with differentially expressed mRNA. Here, we are the first to determine genome-wide lncRNAs expression patterns in TLR3 stimulated MSCs by microarray and this work could provide a comprehensive framework of the transcriptome landscapes of TLR3 stimulated MSCs.


2021 ◽  
Author(s):  
Christine Rempfer ◽  
Gertrud Wiedemann ◽  
Gabriele Schween ◽  
Klaus L. Kerres ◽  
Jan M. Lucht ◽  
...  

Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome, might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant bryophytes. Whereas angiosperms repair DNA double strand breaks (DSB) preferentially via non-homologous end joining (NHEJ), in bryophytes homologous recombination (HR) is the main DNA-DSB repair pathway facilitating the precise integration of foreign DNA into the genome via gene targeting (GT). Here, we studied the influence of ploidy on gene expression patterns and GT efficiency in the moss Physcomitrella using haploid plants and autodiploid plants, generated via an artificial duplication of the whole genome. Single cells (protoplasts) were transfected with a GT construct and material from different time-points after transfection was analysed by microarrays and SuperSAGE sequencing. In the SuperSAGE data, we detected 3.7% of the Physcomitrella genes as differentially expressed in response to the whole genome duplication event. Among the differentially expressed genes involved in DNA-DSB repair was an upregulated gene encoding the X-ray repair cross-complementing protein 4 (XRCC4), a key player in NHEJ. Analysing the GT efficiency, we observed that autodiploid plants were significantly GT suppressed (p<0.001) attaining only one third of the expected GT rates. Hence, an alteration of global transcript patterns, including genes related to DNA repair, in autodiploid Physcomitrella plants correlated with a drastic suppression of HR.


Sign in / Sign up

Export Citation Format

Share Document