scholarly journals Laboratory Investigation of Coupled Electrical Interaction of Fracturing Rock with Gases

Author(s):  
Yuji Enomoto ◽  
Tsuneaki Yamabe ◽  
Shigeki Sugiura ◽  
Hiroshi Kondo

Abstract In the coupled electric interaction of rock fractures and gas invasion, that is, when gases interact with newly created cracked surfaces, the unpaired electrons within the rock crystal defects are thermally stimulated, released into the crack due to the temperature rise at the crack tip via plastic work, and attached to ambient gas molecules to electrify them in a negative state. Using a working hypothesis that this mechanism is the source mechanism of seismo-electromagnetic phenomena, we conducted laboratory experiments in which rocks were fractured with pressurized N2, CO2, CH4, and hot water vapour. Fractures were induced by a flat-ended indenter equipped with a flow channel, which was loaded against blocks of quartz diorite, gabbro, basalt, and granite. Fracture-induced negatively electrified gas currents at ̴25 °C and ̴160 °C were successfully measured for approximately a hundred microseconds or more after full development of the crack. The peak electric currents were as high as 0.05–3 mA, depending on the rock species and interaction area of fractured rock and gas and to a lesser extent on the gas species and temperature. The peak current from fracturing granite, which showed higher g-ray activity, was at least 10 times higher than that from fracturing gabbro, quartz diorite, and basalt. The results supported the validity of the present working hypothesis, that coupled interaction of fracturing rock with deep Earth gases during quasi-static rupture of rocks in the focal zone of a fault might play an important role in the generation of pre- and co-seismic electromagnetic phenomena.

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Yuji Enomoto ◽  
Tsuneaki Yamabe ◽  
Shigeki Sugiura ◽  
Hitoshi Kondo

AbstractIn the coupled electric interaction of rock fractures and gas invasion, that is, when gases interact with newly created crack surfaces, the unpaired electrons within the rock crystal defects are thermally stimulated, released into the crack due to the temperature rise at the crack tip via plastic work, and attached to ambient gas molecules to electrify them in a negative state. Using a working hypothesis that this mechanism is the source mechanism of seismo-electromagnetic phenomena, we conducted laboratory experiments in which rocks were fractured with pressurized N2, CO2, CH4, and hot water vapour. Fractures were induced by a flat-ended indenter equipped with a flow channel, which was loaded against blocks of quartz diorite, gabbro, basalt, and granite. Fracture-induced negatively electrified gas currents at ~ 25 °C and ~ 160 °C were successfully measured for ~ ≥ 100 μs after full development of the crack. The peak electric currents were as high as 0.05–3 μA, depending on the rock species and interaction area of fractured rock and gas and to a lesser extent on the gas species and temperature. The peak current from fracturing granite, which showed higher γ-ray activity, was at least 10 times higher than that from fracturing gabbro, quartz diorite, and basalt. The results supported the validity of the present working hypothesis, that coupled interaction of fracturing rock with deep Earth gases during quasi-static rupture of rocks in the focal zone of a fault might play an important role in the generation of pre- and co-seismic electromagnetic phenomena.


2021 ◽  
Author(s):  
Yuji Enomoto ◽  
Tsuneaki Yamabe ◽  
Shigeki Sugiura ◽  
Hiroshi Kondo

Abstract In the coupled electric interaction of rock fractures and gas invasion, that is, when gases interact with newly created cracked surfaces, the unpaired electrons within the rock crystal defects are thermally stimulated, released into the crack due to the temperature rise at the crack tip via plastic work, and attached to ambient gas molecules to electrify them in a negative state. Using a working hypothesis that this mechanism is the source mechanism of seismo-electromagnetic phenomena, we conducted laboratory experiments in which rocks were fractured with pressurized N 2 , CO 2 , CH 4 , and hot water vapour. Fractures were induced by a flat-ended indenter equipped with a flow channel, which was loaded against blocks of quartz diorite, gabbro, basalt, and granite. Fracture-induced negatively electrified gas currents at ̴ 25 °C and ̴160 °C were successfully measured for approximately a hundred microseconds or more after full development of the crack. The peak electric currents were as high as 0.05–3 mA, depending on the rock species and interaction area of fractured rock and gas and to a lesser extent on the gas species and temperature. The peak current from fracturing granite, which showed higher g-ray activity, was at least 10 times higher than that from fracturing gabbro, quartz diorite, and basalt. The results supported the validity of the present working hypothesis, that coupled interaction of fracturing rock with deep Earth gases during quasi-static rupture of rocks in the focal zone of a fault might play an important role in the generation of pre- and co-seismic electromagnetic phenomena.


Clay Minerals ◽  
2016 ◽  
Vol 51 (4) ◽  
pp. 691-696 ◽  
Author(s):  
Jeff Walker ◽  
Joseph Wheeler

AbstractThe MH-2B borehole, a part of Project HOTSPOT, was drilled to a depth of 1821 m in late Cenozoic basalts, hyaloclastites and interbedded lake sediments, on the Mountain Home Air Force Base in southern Idaho, USA. Drillers encountered hot water (145°C) under artesian pressure at 1745 m in a narrow zone of highly fractured rock associated with a major sub-surface fault. X-ray diffraction (XRD) analysis identified corrensite (with and without smectite) between 1700 and 1800 m, but only smectite above 1700 m and below 1800 m. This corrensite horizon contains a relatively narrow zone of fracturing and hot artesian water near its centre but for the most part occurs in relatively massive basalt flows. No evidence was found for randomly interstratified chlorite-smectite.


2021 ◽  
Vol 11 (2) ◽  
pp. 697
Author(s):  
Seyed Bijan Mahbaz ◽  
Ali Yaghoubi ◽  
Alireza Dehghani-Sanij ◽  
Erfan Sarvaramini ◽  
Yuri Leonenko ◽  
...  

Renewable and sustainable energy sources can play an important role in meeting the world’s energy needs and also in addressing environmental challenges such as global warming and climate change. Geothermal well-doublet systems can produce both electrical and thermal energy through extracting heat from hot-water aquifers. In this paper, we examine some potential challenges associated with the operation of well-doublet systems, including heat conductivity, chemical, and mechanical issues. In these systems, geomechanics issues such as thermal short-circuiting and induced seismicity arise from temperature and pressure change impacts on the stress state in stiff rocks and fluid flow in fractured rock masses. Coupled chemical processes also can cause fluid channeling or formation and tubular goods plugging (scaling) with precipitates. Mechanical and chemical disequilibrium conditions lead to increased production uncertainties; hence risk, and therefore coupled geo-risk assessments and optimization analyses are needed for comparative commercialization evaluations among different sites. The challenges related to heat transfer processes are also examined. These studies can help better understand the issues that may arise during the operation of geothermal well-doublet systems and improve their effectiveness, subsequently reducing associated costs and risks.


2005 ◽  
Vol 45 (1) ◽  
pp. 175
Author(s):  
D. Wyborn ◽  
L. de Graaf ◽  
S. Hann ◽  
B. Nicholson

Geodynamics Limited is nearing the completion of its ‘proof of concept’ hot fractured rock (HFR) program to extract superheated hot water for electricity generation from granite buried beneath the Cooper Basin. Difficult drilling conditions were discovered in the target granite when the Habanero–1 well penetrated permeable sub-horizontal fractures at more than 4,000 m depth. The well was completed at 4,421 m with overpressures in the fractures around this depth exceeding pressures projected from a hydrostatic gradient by more than 5,000 psi. The static rock temperature at the bottom of the well is about 250°C.The overpressures assisted in the development of the world’s largest underground heat exchanger, a volume of rock more than 0.7 km3 defined by more than 11,700 microseismic events located on-site during the injection of 23 ML of fresh water into the granite fracture network. The horizontal heat exchanger is more than 2 km north–south, more than 1 km east–west and more than 300 m thick. During its development there was no evidence of direct upwards growth towards the sedimentary cover, which is at about 3,700 m, though a small number of events were observed above the main cloud of events. From production logging surveys, a major fracture at a depth of 4,254 m is interpreted to have taken most of the flow during the injection.The second well (Habanero–2) was located 500 m southwest of the first. Before intersecting a major fracture, interpreted to be an extension of the dominant fracture in Habanero–1, it was drilled to a depth of 4,325 m. At this depth, total drilling circulation losses were encountered which were only partially overcome with the pumping of calcium carbonate lost circulation material. During the operation the lower 245 m of the drill stem was irretrievably lost, and the well was subsequently sidetracked to a total depth of 4,358 m, just below the main fracture.Flow and circulation testing between the two wells in early 2005 is designed to demonstrate the economic potential of the far-field geothermal system and the heat exchange volume between the two wells.


2021 ◽  
Author(s):  
Eric Romberg ◽  
Andrew Adams ◽  
Jason Edwards ◽  
Taylor Levon

Abstract In this paper, the authors examine the impacts of natural fractures on the distribution of slurry in a well with a permanent fiber installation and drill bit geomechanics data. Additionally, they propose a framework for further investigation of natural fractures on slurry distribution. As part of the Marcellus Shale Energy and Environmental Laboratory (MSEEL), the operator monitored the drilling of a horizontal Marcellus Formation well with drill bit geomechanics, and subsequent stimulation phase with a DAS/DTS permanent fiber installation. Prior to the completion, the authors used an analytical model to examine the theoretical distribution of slurry between perforation clusters from a geomechanics framework. A perforation placement scheme was then developed to minimize the stress difference between clusters and to segment stages by the intensity of natural fractures while conforming to standard operating procedures for the operator's other completions. The operator initially began completing the well with the geomechanics-informed perforation placement plan while monitoring the treatment distribution with DAS/DTS in real time. The operator observed several anomalous stages with treating pressures high enough to cause operational concerns. The operator, fiber provider, and drill bit geomechanics provider reviewed the anomalous stages’ treatment data, DAS/DTS data, and geomechanics data and developed a working hypothesis. They believed that perforation clusters placed in naturally fractured rock were preferentially taking the treatment slurry. This phenomenon appeared to cause other clusters within the stage to sand-off or become dormant prematurely, resulting in elevated friction pressure. This working hypothesis was used to predict upcoming stages within the well that would be difficult to treat. Another perforation placement plan was developed for the second half of the well to avoid perforating natural fractures as an attempt to mitigate operational issues due to natural fracture dominated distribution. Over the past several years, the industry's growing understanding of geomechanical and well construction variability has created new limited-entry design considerations to optimize completion economics and reduce the variability in cluster slurry volumes. Completion engineers working in naturally fractured fields, such as the Marcellus, should consider the impact the natural fractures have on slurry distribution when optimizing their limited-entry designs and stage plan.


Author(s):  
J.M. Cowley

The problem of "understandinq" electron microscope imaqes becomes more acute as the resolution is improved. The naive interpretation of an imaqe as representinq the projection of an atom density becomes less and less appropriate. We are increasinqly forced to face the complexities of coherent imaqinq of what are essentially phase objects. Most electron microscopists are now aware that, for very thin weakly scatterinq objects such as thin unstained bioloqical specimens, hiqh resolution imaqes are best obtained near the optimum defocus, as prescribed by Scherzer, where the phase contrast imaqe qives a qood representation of the projected potential, apart from a lack of information on the lower spatial frequencies. But phase contrast imaqinq is never simple except in idealized limitinq cases.


Author(s):  
G. G. Hembree ◽  
M. A. Otooni ◽  
J. M. Cowley

The formation of oxide structures on single crystal films of metals has been investigated using the REMEDIE system (for Reflection Electron Microscopy and Electron Diffraction at Intermediate Energies) (1). Using this instrument scanning images can be obtained with a 5 to 15keV incident electron beam by collecting either secondary or diffracted electrons from the crystal surface (2). It is particularly suited to studies of the present sort where the surface reactions are strongly related to surface morphology and crystal defects and the growth of reaction products is inhomogeneous and not adequately described in terms of a single parameter. Observation of the samples has also been made by reflection electron diffraction, reflection electron microscopy and replication techniques in a JEM-100B electron microscope.A thin single crystal film of copper, epitaxially grown on NaCl of (100) orientation, was repositioned on a large copper single crystal of (111) orientation.


Author(s):  
J.M. Cowley

By extrapolation of past experience, it would seem that the future of ultra-high resolution electron microscopy rests with the advances of electron optical engineering that are improving the instrumental stability of high voltage microscopes to achieve the theoretical resolutions of 1Å or better at 1MeV or higher energies. While these high voltage instruments will undoubtedly produce valuable results on chosen specimens, their general applicability has been questioned on the basis of the excessive radiation damage effects which may significantly modify the detailed structures of crystal defects within even the most radiation resistant materials in a period of a few seconds. Other considerations such as those of cost and convenience of use add to the inducement to consider seriously the possibilities for alternative approaches to the achievement of comparable resolutions.


Author(s):  
Kenneth R. Lawless

One of the most important applications of the electron microscope in recent years has been to the observation of defects in crystals. Replica techniques have been widely utilized for many years for the observation of surface defects, but more recently the most striking use of the electron microscope has been for the direct observation of internal defects in crystals, utilizing the transmission of electrons through thin samples.Defects in crystals may be classified basically as point defects, line defects, and planar defects, all of which play an important role in determining the physical or chemical properties of a material. Point defects are of two types, either vacancies where individual atoms are missing from lattice sites, or interstitials where an atom is situated in between normal lattice sites. The so-called point defects most commonly observed are actually aggregates of either vacancies or interstitials. Details of crystal defects of this type are considered in the special session on “Irradiation Effects in Materials” and will not be considered in detail in this session.


Sign in / Sign up

Export Citation Format

Share Document