Effects of a gradual increase in temperature on the antioxidant defense system and plasma metabolic parameters in Antarctic fish Notothenia rossii

Author(s):  
Angela Carolina Guillen ◽  
Marcelo Eduardo Borges ◽  
Tatiana Herrerias ◽  
Priscila Krebsbach Kandalski ◽  
Maria Rosa Dmengeon Pedreiro de Souza ◽  
...  

Abstract Antarctica is considered a thermally stable ecosystem; however, climate studies point to increases in air and surface water temperatures in this region. These thermal changes may affect the biological processes of animals inhabiting such regions because they are stress factors and may promote metabolic changes, rendering the animals more vulnerable to oxidative damage. Plasma parameters are also good indicators of stress and allow analysis of the metabolic status of fish under temperature increases. The present study assessed the effect of acclimation temperature on the levels of plasma, osmoregulatory and oxidative metabolism parameters and antioxidant defenses in kidney, gill, liver and brain tissues of Notothenia rossii subjected to gradual temperature changes of 0.5°C/day until reaching temperatures of 2, 4, 6 and 8°C. Under the effect of the 0.5°C/day acclimation rate, gill tissue showed increased glutathione-S-transferase (GST) activity, and kidney tissue showed increased H⁺-ATPase at 9 days of the experiment (2°C). In the liver, consistent increases in the MDA concentration as an indicator of lipid peroxidation (9 (2°C),13 (4°C),17 (6°C) and 21 (6°C) days) were noted, as well as an increase in GSH at 9 days (2°C). In plasma, gradual decreases in the concentrations of total proteins and globulins were observed. These responses indicate the presence of thermal plasticity and an attempt at regulation to mitigate thermal stress. The changes showed that a gradual increase in temperature may cause opposite responses to the thermal shock model in N. rossii.

2001 ◽  
Vol 204 (4) ◽  
pp. 701-709 ◽  
Author(s):  
C.K. Tipsmark ◽  
S.S. Madsen

The effects of cyclic AMP on Na+/K+-ATPase activity were studied in the gill and kidney of the euryhaline brown trout Salmo trutta using two different experimental approaches. In the first series of experiments, in situ Na+/K+-ATPase activity was analyzed by measuring the ouabain-sensitive uptake of non-radioactive rubidium (Rb+) into gill cells and blocks of gill and kidney tissue. Rubidium uptake was linear for at least 30 min and was significantly inhibited by 1 mmol × l(−1) ouabain. Several agents presumed to increase the intracellular cyclic AMP concentration inhibited ouabain-sensitive Rb+ uptake in both gill (0.5 and 2 mmol × l(−1) dibutyryl-cyclic AMP, 1 mmol × l(−1) theophylline, 10 micromol × l(−1) forskolin and 10 micromol × l(−1)isoproterenol) and kidney (10 micromol × l(−1) forskolin) tissue from freshwater-acclimated fish. In a separate series of experiments, ATP hydrolase activity was assayed in a permeabilised gill membrane preparation after incubation of tissue blocks with 10 micromol × l(−1)forskolin. Forskolin elevated gill cyclic AMP levels 40-fold, inhibited maximal enzymatic Na+/K+-ATPase activity (Vmax) in gill tissue from both freshwater- and seawater-acclimated fish and reduced the apparent K+ affinity in the gills of seawater-acclimated fish, demonstrating that the effects are mediated through modifications of the enzyme itself. The protein phosphatase inhibitors okadaic acid and cyclosporin A did not affect forskolin-induced inhibition of Na+/K+-ATPase activity, indicating that forskolin-mediated modulation was stable for the duration of assay. We suggest that cyclic-AMP-mediated phosphorylation through protein kinases may underlie the rapid modulation of Na+/K+-ATPase activity in the osmoregulatory tissues of euryhaline teleosts.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
William S Bugg ◽  
Gwangseok R Yoon ◽  
Alexandra N Schoen ◽  
Andrew Laluk ◽  
Catherine Brandt ◽  
...  

Abstract Temperature is one of the most important abiotic factors regulating development and biological processes in ectotherms. By 2050, climate change may result in temperature increases of 2.1–3.4°C in Manitoba, Canada. Lake sturgeon, Acipenser fulvescens, from both northern and southern populations in Manitoba were acclimated to 16, 20 and 24°C for 30 days, after which critical thermal maximum (CTmax) trials were conducted to investigate their thermal plasticity. We also examined the effects of temperature on morphological and physiological indices. Acclimation temperature significantly influenced the CTmax, body mass, hepatosomatic index, metabolic rate and the mRNA expression of transcripts involved in the cellular response to heat shock and hypoxia (HSP70, HSP90a, HSP90b, HIF-1α) in the gill of lake sturgeon. Population significantly affected the above phenotypes, as well as the mRNA expression of Na+/K+ ATPase-α1 and the hepatic glutathione peroxidase enzyme activity. The southern population had an average CTmax that was 0.71 and 0.45°C higher than the northern population at 20 and 24°C, respectively. Immediately following CTmax trials, mRNA expression of HSP90a and HIF-1α was positively correlated with individual CTmax of lake sturgeon across acclimation treatments and populations (r = 0.7, r = 0.62, respectively; P < 0.0001). Lake sturgeon acclimated to 20 and 24°C had decreased hepatosomatic indices (93 and 244% reduction, respectively; P < 0.0001) and metabolic suppression (27.7 and 42.1% reduction, respectively; P < 0.05) when compared to sturgeon acclimated to 16°C, regardless of population. Glutathione peroxidase activity and mRNA expression Na+/K+ ATPase-α1 were elevated in the northern relative to the southern population. Acclimation to 24°C also induced mortality in both populations when compared to sturgeon acclimated to 16 and 20°C. Thus, increased temperatures have wide-ranging population-specific physiological consequences for lake sturgeon across biological levels of organization.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sonia Sifuentes-Franco ◽  
Fermín Paul Pacheco-Moisés ◽  
Adolfo Daniel Rodríguez-Carrizalez ◽  
Alejandra Guillermina Miranda-Díaz

Diabetic polyneuropathy (DPN) is the most frequent and prevalent chronic complication of diabetes mellitus (DM). The state of persistent hyperglycemia leads to an increase in the production of cytosolic and mitochondrial reactive oxygen species (ROS) and favors deregulation of the antioxidant defenses that are capable of activating diverse metabolic pathways which trigger the presence of nitro-oxidative stress (NOS) and endoplasmic reticulum stress. Hyperglycemia provokes the appearance of micro- and macrovascular complications and favors oxidative damage to the macromolecules (lipids, carbohydrates, and proteins) with an increase in products that damage the DNA. Hyperglycemia produces mitochondrial dysfunction with deregulation between mitochondrial fission/fusion and regulatory factors. Mitochondrial fission appears early in diabetic neuropathy with the ability to facilitate mitochondrial fragmentation. Autophagy is a catabolic process induced by oxidative stress that involves the formation of vesicles by the lysosomes. Autophagy protects cells from diverse stress factors and routine deterioration. Clarification of the mechanisms involved in the appearance of complications in DM will facilitate the selection of specific therapeutic options based on the mechanisms involved in the metabolic pathways affected. Nowadays, the antioxidant agents consumed exogenously form an adjuvant therapeutic alternative in chronic degenerative metabolic diseases, such as DM.


2011 ◽  
Vol 301 (5) ◽  
pp. R1453-R1466 ◽  
Author(s):  
Heidrun Sigrid Windisch ◽  
Raphaela Kathöver ◽  
Hans-Otto Pörtner ◽  
Stephan Frickenhaus ◽  
Magnus Lucassen

It is widely accepted that adaptation to the extreme cold has evolved at the expense of high thermal sensitivity. However, recent studies have demonstrated significant capacities for warm acclimation in Antarctic fishes. Here, we report on hepatic metabolic reorganization and its putative molecular background in the Antarctic eelpout ( Pachycara brachycephalum ) during warm acclimation to 5°C over 6 wk. Elevated capacities of cytochrome c oxidase suggest the use of warm acclimation pathways different from those in temperate fish. The capacity of this enzyme rose by 90%, while citrate synthase (CS) activity fell by 20% from the very beginning. The capacity of lipid oxidation by hydroxyacyl-CoA dehydrogenase remained constant, whereas phosphoenolpyruvate carboxykinase as a marker for gluconeogenesis displayed 40% higher activities. These capacities in relation to CS indicate a metabolic shift from lipid to carbohydrate metabolism. The finding was supported by large rearrangements of the related transcriptome, both functional genes and potential transcription factors. A multivariate analysis (canonical correspondence analyses) of various transcripts subdivided the incubated animals in three groups, one control group and two responding on short and long timescales, respectively. A strong dichotomy in the expression of peroxisome proliferator-activated receptors-1α and -β receptors was most striking and has not previously been reported. Altogether, we identified a molecular network, which responds sensitively to warming beyond the realized ecological niche. The shift from lipid to carbohydrate stores and usage may support warm hardiness, as the latter sustain anaerobic metabolism and may prepare for hypoxemic conditions that would develop upon warming beyond the present acclimation temperature.


1957 ◽  
Vol 55 (3) ◽  
pp. 374-381 ◽  
Author(s):  
Golda selzer

The Mahoney, Type I, poliomyelitis virus undergoes two ‘cycles’ of multiplication in the CNS of suckling mice—the first within 48 hr. after intracerebral inoculation, and the second approximately 10 days later. The former may not be associated with paralysis whilst the latter usually is.By to-and-fro passage in suckling mouse brain and monkey kidney-tissue culture there is a gradual increase in the amount of virus obtained during the early multiplication cycle in suckling mouse brains and associated with this is the occurrence of early paralysis in 80% or more of these mice. The virus capable of causing early paralysis in infant mice is gradually lost by direct mouse-to-mouse passage.The occurrence of two variants is postulated, one of these apparently nonparalytic and multiplying selectively in suckling brains.The author would like to thank the late Prof. M. van den Ende for his stimulating discussions and advice, Dr P. K. Olitsky of New York for his constant interest, and Mr T. C. Norcott for his able technical assistance.


2013 ◽  
Vol 39 (6) ◽  
pp. 1591-1601 ◽  
Author(s):  
E. Rodrigues ◽  
M. Feijó-Oliveira ◽  
G. S. Vani ◽  
C. N. K. Suda ◽  
C. S. Carvalho ◽  
...  

2016 ◽  
pp. 88-92
Author(s):  
Edson Rodrigues ◽  
Mariana Feijó-Oliveira ◽  
Gannabathula Sree Vani ◽  
Cecília Nahomi Kawagoe Suda ◽  
Lucélia Donatti ◽  
...  

2002 ◽  
Vol 205 (15) ◽  
pp. 2305-2322 ◽  
Author(s):  
Ian A. Johnston ◽  
Genevieve K. Temple

SUMMARY Seasonal cooling can modify the thermal preferenda of ectothermic vertebrates and elicit a variety of physiological responses ranging from winter dormancy to an acclimation response that partially compensates for the effects of low temperature on activity. Partial compensation of activity levels is particularly common in aquatic species for which seasonal temperature changes provide a stable cue for initiating the response. Thermal plasticity of locomotory performance has evolved independently on numerous occasions, and there is considerable phylogenetic diversity with respect to the mechanisms at the physiological and molecular levels. In teleosts,neuromuscular variables that can be modified include the duration of motor nerve stimulation, muscle activation and relaxation times, maximum force and unloaded shortening velocity (Vmax), although not all are modified in every species. Thermal plasticity in Vmax has been associated with changes in myosin ATPase activity and myosin heavy chain(MyHC) composition and/or with a change in the ratio of myosin light chain isoforms. In common carp (Cyprinus carpio), there are continuous changes in phenotype with acclimation temperature at lower levels of organisation, such as MyHC composition and Vmax, but a distinct threshold for an effect in terms of locomotory performance. Thus,there is no simple relationship between whole-animal performance and muscle phenotype. The nature and magnitude of temperature acclimation responses also vary during ontogeny. For example, common carp acquire the ability to modify MyHC composition with changes in acclimation temperature during the juvenile stage. In contrast, the thermal plasticity of swimming performance observed in tadpoles of the frog Limnodynastes peronii is lost in the terrestrial adult stage. Although it is often assumed that the adjustments in locomotory performance associated with temperature acclimation enhance fitness, this has rarely been tested experimentally. Truly integrative studies of temperature acclimation are scarce, and few studies have considered both sensory and motor function in evaluating behavioural responses. Developmental plasticity is a special case of a temperature acclimation response that can lead to temporary or permanent changes in morphology and/or physiological characteristics that affect locomotory performance.


2021 ◽  
Author(s):  
Mohammad Amin Mombeini ◽  
Hadi Kalantar ◽  
Elahe Sadeghi ◽  
Mehdi Goudarzi ◽  
Hamidreza Khalili ◽  
...  

Abstract Purpose Cyclophosphamide is an alkylating agent with nephrotoxicity that constraints its clinical application. Berberine is an isoquinoline derivative alkaloid with biological functions like antioxidant and anti-inflammatory. The current research intended to examine the nephroprotective impacts of berberine against cyclophosphamide-stimulated nephrotoxicity. Methods Forty animal subjects were randomly separated into five categories of control (Group I). Cyclophosphamide (200 mg/kg, i.p., on 7th day) (Group II), and groups III and IV that received berberine 50 and 100 mg/kg orally for seven days and a single injection of cyclophosphamide on 7th day. Group V as berberine (100 mg/kg, alone). On day 8, blood samples were drawn from the retro-orbital sinus to determine serum levels of blood urea nitrogen (BUN), creatinine (Cr), Neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) as biomarkers for kidney injury. Nitric oxide (NO), malondialdehyde (MDA) and glutathione (GSH) levels, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities as oxidative stress factors, tumor necrosis factor- α (TNF-α) and interleukin 1 beta (IL-1β) levels as inflammatory mediators were assessed in kidney tissue. Results The results of this study demonstrated that berberine was able to protect remarkably the kidney from CP-induced injury through decreasing the level of BUN, Cr, NGAL, KIM-1, NO, MDA TNF-α, IL-1β and increasing the level of GSH, CAT, SOD and GPx activities. Conclusion Berberine may be employed as a natural agent to prevent cyclophosphamide-induced nephrotoxicity through anti-oxidant and anti-inflammatory effects.


Sign in / Sign up

Export Citation Format

Share Document