scholarly journals Pelletization of Biomass Feedstocks: Effect of Moisture Content, Particle Size and a Binder on Characteristics of Biomass Pellets

Author(s):  
Imran Ahmed ◽  
Asif Ali ◽  
Babar Ali ◽  
Mahdi Hassan ◽  
Sakhawat Hussain ◽  
...  

Abstract Pelletization of low value added biomass materials such as furfural residue (FR) and sawdust was performed by using a lab scale pelletizer. Effects of moisture content (MC), particle size and a binder on quality parameters (e.g. pellet density, strength and hardness) and on energy consumption were investigated. Quality of pellets was analysed and compared. MC was found to be the more dominant parameter affecting pellet density, strength and hardness of furfural residue pellets (FRPs) and sawdust pellets (SPs), followed by particle size and a binder. Highest particle density of 1.419 g/cm3 for FRPs (0.5–1.41 mm) and 1.243 g/cm3 for SPs (0.25–0.5 mm) was achieved at MC of 8% and 18%. Highest decrease in relaxed density was observed at MC of 13% for FRPs and 28% for SPs. True density of FRPs and SPs made from particles of 0.25–0.5 mm was found higher than 0.5–1.41 mm. The highest strength and hardness (6.29 MPa and 401.3 N/mm2) for FRPs was achieved at 5.5% MC and particles 0.25–0.5 mm. Optimum strength (6.03 MPa) and hardness (96.06 N/mm2) for SPs was obtained at 18% MC and particles 0.25–0.5 mm. The lowest energy consumption (16.16 J/g) for FRPs (0.25–0.5 mm) and 20.22 J/g for SPs (0.5–1.41 mm) was achieved at MC of 13% and 28%. Addition of binding agent to FR sawdust decreased energy consumption of FRPs and SPs. SPs quality was enhanced with the use of a binder. Heating value of FRPs were found higher than SPs.

Author(s):  
Ziedonis Miklašēvičs

The methodology in Latvia forest industry provide to determine the quality of energy chips only in long- term storage places before selling. Due to the lack of hard empirical data about the quality parameters of energy chips in different phases of manufacturing process, this research paper consists of: - the identification and analyses of the factors that influenced the values of energy chips quality features such as: bulk density, moisture content, ash content, higher and lower heating value according to actual moisture content and per dry mass of the chips; - the methodology for determination the quality parameters of energy chips by analysis the wood moisture content and by choice the method of the manufacturing of energy chips.


2016 ◽  
Vol 12 (7) ◽  
pp. 661-671 ◽  
Author(s):  
Samy Marey ◽  
Mohamed Shoughy

Abstract The effects of the drying temperature and the residual moisture content on the drying behavior, energy consumption and quality of dried citrus peels (CPs), which are value-added food ingredients, were studied. The CP samples were dried in a laboratory-scale hot-air dryer at air temperatures from 40 to 70 °C under a constant air velocity of 1 m/s until the desired moisture content for safe storage was reached or until the final moisture level was achieved for the specific drying conditions. Cakes prepared from blends containing different proportions (0 %, 10 %, 15 % and 20 %) of dried CPs were also evaluated for chemical composition and sensory attributes. The optimal drying temperatures were 50–60 °C, and the optimal moisture content was 10±0.2 % w.b.; these conditions reduced the drying time and energy consumption and maximized the product quality. In contrast, over-drying CPs with the higher temperatures and to a final moisture level of 5.4±0.2 % sharply increased the loss of vitamin C, carotenoids as antioxidants and essential oils. Incorporation of 15 % dried orange and mandarin peels in cake formulas increased the dietary fiber by 33.5 % and 29.6 %, the crude fat by 2.9 % and 4.6 % and the ash by 30.6 % and 29.0 %, respectively, whereas the protein and total carbohydrate content decreased slightly. Highly acceptable nutritious cakes could be obtained by incorporating 15 % orange or mandarin peel dried to 10 % w.b. moisture content into the formulation.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


Author(s):  
I. L. Whyte

AbstractThe origins and development of the U100 (U4) thick-walled open-drive sampler are reviewed. The requirements of CP 2001 and BS 5930 are examined in relation to sample quality, and these are shown to be too favourable. Causes of sample disturbance are considered, particularly those due to volume changes, and shown to depend on moisture content, plasticity and particle size distribution. Quality classes possible with conventional U100 samples are suggested, and Classes 3 or 4 are to be generally expected. Class 1 samples are improbable. It is recommended that a general purpose sampler such as the U100 should have a maximum inside clearance of 1% and not ‘about 1%’ as recommended in BS 5930.


FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 713 ◽  
Author(s):  
Diego Aleixo Silva ◽  
Gabriela Tami Nakashima ◽  
João Lúcio Barros ◽  
Alessandra Luzia Da Roz ◽  
Fabio Minoru Yamaji

O objetivo deste trabalho foi caracterizar a produção de briquetes feita a partir de quatro diferentes biomassas residuais. Foram utilizados os resíduos de serragem de Eucalyptus sp, serragem de Pinus sp, bagaço de cana-de-açúcar (Saccharum officinarum L.) e palha de cana-de-açúcar. Os resíduos foram tratados para que obtivessem 12% de umidade e uma granulometria inferior a 1,70 mm. Foram produzidos 15 briquetes para cada um dos quatro tratamentos. A pressão utilizada foi de 1250 kgf.cm-2 durante 30 segundos. Os briquetes obtiveram densidades que oscilaram 0,88 a 1,11 g.cm-3. Isto representou uma faixa de 5 a 14 vezes a menos de ocupação de volume para uma mesma quantidade de massa. O poder calorifico foi de 19.180 J.kg-1 e 20.315 J.kg-1 para as serragens de eucalipto e pinus respectivamente. Para o bagaço e palha de cana os valores foram de 18.541 J.kg-1 e 15.628 J.kg-1. A palha da cana-de-açúcar apresentou um teor de cinzas de 12%. As expansões dos tratamentos oscilaram 4 a 9% e as resistências mecânicas variaram de 1,215 MPa à 0,270 MPa. Todos os briquetes se mostraram resistentes para um empilhamento superior a 10 m de altura. O procedimento adotado pode ajudar a diminuir o espaço de estocagem e de transporte. AbstractThis research aims to characterize the production of briquettes from four different biomasses. We used residues such as Eucalyptus sp sawdust, Pinus sp sawdust , sugarcane bagasse (Saccharum officinarum L.) and sugarcane straw. The residues were treated to obtain 12% moisture content and particle size less than 1.70 mm. We produced 15 briquettes for each treatment. The pressure used was 1250 kgf.cm-2 for 30 seconds. The briquettes obtained densities ranged from 0.88 to 1.11 g.cm-3. This represented a range of 5 to 14 times less volume occupancy for the same amount of mass. The high heating value (HHV) was 19,180 J.kg-1 and 20,315 J.kg-1 for eucalyptus and pine sawdust respectively. The HHV for the bagasse was 18,541 J.kg-1 and for straw was 15,628 J.kg-1. The straw presented an ash content of 12%. The expansions of the treatments ranged 4 to 9% and mechanical resistances ranging from 1,215 MPa to 0,270 MPa. All briquettes were resistant to a higher stacking to 10 m high. The methods can help to decrease the space of storage and transport.Keywords: Waste; biofuel; energy; compression; stacking.


2020 ◽  
Vol 8 (2) ◽  
pp. 55
Author(s):  
Lintang Pratama ◽  
Dwi Pangga ◽  
Dwi Sabda Budi Prasetya

This study is a research on water hyacinth-based briquettes which shows the calorific value of each form of briquettes. The purpose of this study was to analyze the quality of water hyacinth briquettes with variations in pressure and pellet geometry. The quality analyzed includes moisture content and calorific value. The method of making briquettes starts from charcoal, pounding, then mixing with tapioca starch adhesive. The composition of the mixture used is 90% water hyacinth charcoal with 10% tapioca starch adhesive. 4 geometric variations are used, namely, solid box, hollow box, solid tube and hollow tube with 3 pressure variations, namely, 10 PSI, 20 PSI and 30 PSI. Test results and analysis,briquettes at a pressure of 20 PSI produces a calorific value range of 91.15 - 150.14 cal / gram. The resulting calorific value is higher than the briquettes at a pressure of 10 PSI and 30 PSI with a heating value range of 93.84 - 148.79 cal / gram and 89.81 - 135.39 cal / gram. Hollow briquettes produce a calorific value range of 107.24 - 150.14 cal / gram higher than solid geometric briquettes which produce a heating value range of 89.81 - 148.79 cal / gram. So that the contribution of the results of this research is that the community makes briquettes with shape and pressure with good results shown in this study.


2021 ◽  
Vol 2021 (2) ◽  
pp. 4400-4407
Author(s):  
LUBOSLAV STRAKA ◽  
◽  
PATRIK KUCHTA ◽  

Current engineering production is characterized by ever-increasing requirements for the final quality of products. But high fabrication productivity is required in many cases as well. Another advantage is, of course, a beneficial economic efficiency of the production process. However, despite the advanced technical level of production and extensive knowledge in the field of electro-erosive machining, in many cases, the overall efficiency of the production process is based on the skills of operators. Besides, insufficiently experienced production operators sometimes still use the trial and error system, even today. A comprehensive set of information for selecting optimal conditions of the electric discharge machining process with the possibility of practical application in real conditions of practice is currently non-existent. The paper therefore describes the experimental measurements performed in order to optimize the quality of the machined surface with respect to electric energy consumption in the WEDM process. In contrast to current approaches, the solution of the issue relied on determining the relationship between the performance parameters of the process and its controllable output quality parameters so that they would be applicable to the conditions of real practice. It was found that with the reduction of discharge energy through individual WEDM operations, the quality indicators in terms of roughness parameters improve. However, on the other hand, reducing the discharge energy leads to a significant increase in the total electric energy consumption. Therefore, the aim of the performed optimization was to look for a suitable type of WEDM operation, in which a favourable value of the roughness of the eroded surface is achieved while maintaining favourable electric energy consumption.


2020 ◽  
Vol 20 (2) ◽  
pp. 184
Author(s):  
Nikdalila Radenahmad ◽  
Md Sumon Reza ◽  
Muhammad S. Abu Bakar ◽  
Abul K. Azad

Rice husk is biomass that can be utilized as fuel for biomass gasification as a renewable energy source. In this paper, thermochemical methods were used to determine the higher heating values, moisture content, bulk density, pellet density, microstructure, and elemental composition of Thai Rice Husk (Oryza Sativa Linn). The heating energy was analyzed using a bomb calorimeter, which showed a higher heating value of 15.46 MJ/kg. Determination of pellet density through rice husk powder pelletization exhibited a value of 1.028 g/cm3, while moisture content was 5.017 wt%. The heating value and moisture content revealed good agreement with the literature values, indicating the potentiality of rice hush for energy generation. Scanning electron microscopy (SEM) showed that the raw rice husk and its ash have similar porosity types but different bulk structure.  Elemental analysis using energy dispersive X-ray (EDX) indicated that rice husk contains O, Si, C while O and C percentages were drastically decreased during combustion. The obtained heating value and moisture content proved that rice husk could be used as a bio-energy source in biomass gasification for power generation.


2018 ◽  
Vol 7 (1) ◽  
pp. 41
Author(s):  
Muhammad Silmi Hi Abubakar ◽  
Siti Nuryanti ◽  
Suherman Suherman

Study on the purification and quality test of used cooking oil with turmeric has been done. This study aims to determine the quality of cooking oil after purified turmeric. The quality parameters of oil studied were the moisture content, free fatty acids (FFA), and peroxide. The methods used for determination of these parameters were gravimetry for moisture content, acid-base titration for free fatty acids, and iodometric for peroxide. The test results for water from 0.6% to 0.4% free fatty acid from 1.2% to 0.2%, and peroxide levels before and after purification were successively from and 6 meq/g to 4 meq/g, respectively. Only free fatty acids of all three parameters met the requirement of SNI.


Sign in / Sign up

Export Citation Format

Share Document