scholarly journals Investigation on Seismic Behaviour of Masonry Infilled Self-Centring-Beam Moment-Frames using New Infill Material Model

Author(s):  
Xiaogang Huang ◽  
Zhen Zhou ◽  
yuhang wang

Abstract This paper conducted experimental and numerical investigations on seismic behaviour of masonry infilled self-centring-beam moment-frames (SCB-MFs). First, an efficient hysteretic material model was proposed for use with the equivalent strut modelling approach of infill walls. This model was defined by backbone parameters and hysteretic parameters and implemented in the OpenSees platform to facilitate its application. Then, an approximately half-scale test of infilled SCB-MFs was carried out. The test observations and load-carrying capacities of masonry walls in the specimen were reported and analysed. The experimental hysteresis was reproduced by the numerical model using the proposed infill material. Finally, structural analyses were conducted for 3-, 6-, 9-, and 12-storey infilled SCB-MFs based on the calibrated computational model. Comparisons of the hysteretic behaviours obtained by the simulation with experimental results showed that the proposed infill material could capture the strength, stiffness, and energy dissipation during reloading, along with the residual drift during unloading. The nonlinear dynamic analyses also validated the feasibility of using the proposed model to simulate the dynamic responses of infilled SCB-MFs.

2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Łukasz Smakosz ◽  
Ireneusz Kreja ◽  
Zbigniew Pozorski

Abstract The current report is devoted to the flexural analysis of a composite structural insulated panel (CSIP) with magnesium oxide board facings and expanded polystyrene (EPS) core, that was recently introduced to the building industry. An advanced nonlinear FE model was created in the ABAQUS environment, able to simulate the CSIP’s flexural behavior in great detail. An original custom code procedure was developed, which allowed to include material bimodularity to significantly improve the accuracy of computational results and failure mode predictions. Material model parameters describing the nonlinear range were identified in a joint analysis of laboratory tests and their numerical simulations performed on CSIP beams of three different lengths subjected to three- and four-point bending. The model was validated by confronting computational results with experimental results for natural scale panels; a good correlation between the two results proved that the proposed model could effectively support the CSIP design process.


2012 ◽  
Vol 152-154 ◽  
pp. 990-996 ◽  
Author(s):  
Fabio de Angelis

In the present work the evolutive laws and the constitutive relations for a model of nonlocal viscoplasticity are analyzed. Nonlocal dissipative variables and suitable regularization operators are adopted. The proposed model is developed within the framework of the generalized standard material model. Suitable forms of the elastic and dissipative viscoplastic potentials are defined and the associated constitutive relations are specialized. The evolutive laws for the proposed nonlocal viscoplastic model are presented in a general form which can be suitably specialized in order to include different models of nonlocal viscoplasticity.


2019 ◽  
Vol 22 (11) ◽  
pp. 2517-2529
Author(s):  
Xiao-Qing Zhou ◽  
Ming-Yu Wang ◽  
Li-Xiao Li

Architectural glass, especially the float glass, is a fragile part of a building. The architectural glass becomes a large amount of high-speed flying debris under bomb attacks and accidental explosions, thereby causing serious threat to residents. This study investigates the dynamic responses of a normal float glass subjected to blast loading using the explicit dynamic finite element software LS-DYNA. A JH-2 material model, which considers the strain rate effect and damage accumulation, is adopted for the float glass. A preliminary study shows that the present numerical model combined with reasonable material parameters can simulate the failure mode of the glass and the ejection velocity of glass fragments after failure. The verified model is then used to investigate the dynamic damage responses of the float glass under different loading cases. The damage assessment criterion of float glass is established on the basis of the glazing protection levels defined by the General Services Administration of the United States. Comprehensive simulations are conducted on different amounts of explosive and standoff distances. The degrees of glass damage under different loading cases are determined by combining the projection velocity of glass fragments after failure with a kinematic equation. Finally, the damage assessment diagram of float glass under different amounts of explosive is presented and compared with those in FEMA 426.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Jun Liu ◽  
Hongliang Zhao ◽  
Simon X. Yang ◽  
Qingyou Liu ◽  
Guorong Wang

The landing string is an important component of deepwater riserless drilling systems. Determination of the dynamic characteristics of the landing string plays an essential role in its design for ensuring its safe operation. In this paper, a dynamic model is developed to investigate the dynamic response characteristics of a landing string, where a landing string in a marine environment is modeled as a flexible slender tube undergoing coupled transverse and axial motions. The heaving motion of the drilling platform is taken as the upper boundary condition and the motion of the drilling bit caused by the interaction between the rock and the bit as the lower boundary condition. A semiempirical Morison equation is used to simulate the effect of the load imposed by the marine environment. The dynamic model, which is nonlinearly coupled and multibody, is discretized by a finite element method and solved by the Newmark technique. Using the proposed model, the dynamic responses of the displacement, axial force, and moment in the landing string are investigated in detail to find out the influences of driving depth of surface catheter, platform motion, bit movement, and marine environment on the dynamical characteristics of the landing string.


2013 ◽  
Vol 353-356 ◽  
pp. 1836-1845
Author(s):  
Zhi Xiong Chen ◽  
Ying Hu

The response of reinforced concrete buildings to earthquake loads can be substantially affected by the influence of infill walls. Also the out-of-plane failure of the infill can cause heavy casualties. In this article, an improved numerical model for the simulation of the in-plane and out-of-plane behaviour of masonry infill is proposed. First, the proposed model is presented. This is an upgrading equivalent strut model composed of two beam-column type elements, with a node at the mid-span assigned a mass in the in-plane and the out-of-plane direction to account for the inertial forces in both directions. Second, the main results of the calibration analyses obtained with two experiments are presented and discussed.


Author(s):  
Fengtao Wang ◽  
Li Chen ◽  
Heng Liu ◽  
Minqing Jing ◽  
Wei Chen ◽  
...  

An existing defect on the bearing raceway may evolve with the interactions between the bearing elements, and the evolutions of the defect may be divided into different stages. In this study, a dynamic model for a cylindrical roller bearing with localized defects on raceways is developed to investigate vibration character of the bearing in these stages. The coupling of centrifugal forces, gravity forces and the slipping of the roller are considered. The half sine function and step function are used to construct time-varying models of defects in different stages, which is reflected on the local deflection. The system dynamic equations are solved by the fourth-order Runge-Kutta integration method with variable steps. Time domains and frequency domains are used to analyze dynamic responses of the bearing in every defect stage, which can be used as a reference of fault diagnosis. An experimental comparison in the previous study is carried out to validate the proposed model.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 903 ◽  
Author(s):  
Zhanyu Zhai ◽  
Bingyan Jiang ◽  
Dietmar Drummer

To clarify the individual contribution of viscoelastic and viscous deformation to the global nonlinear response of composites, multilevel cyclic loading-unloading recovery tensile tests were carried out. The experimental results show that there is a linear relationship between the viscous strain and viscoelastic strain of composites, regardless of the off-axis angle or loading stress level. On the basis of experimental results, a coupled damage-plasticity constitutive model was proposed. In this model, the plasticity theory was adopted to assess the evolution of viscous strains. The viscoelastic strain was represented as a linear function of viscous strains. Moreover, the Weibull function of the effective stress was introduced to evaluate the damage variables in terms of stiffness reduction. The tensile stress-strain curves, predicted by the proposed model, showed a good agreement with experimental results.


2017 ◽  
Vol 62 (2) ◽  
pp. 879-883 ◽  
Author(s):  
M. Zheng ◽  
H. Gao ◽  
H. Teng ◽  
J. Hu ◽  
Z. Tian ◽  
...  

AbstractIn this article, it aims to propose effective approaches for hydro-forming process of bi-metallic composite pipe by assuming plane strain and elastic-perfectly plastic material model. It derives expressions for predicting hydro-forming pressure and residual stress of the forming process of bi-metallic composite pipe. Test data from available experiments is employed to check the model and formulas. It shows the reliability of the proposed model and formulas impersonally.


Sign in / Sign up

Export Citation Format

Share Document