scholarly journals Expression and functionality study of 9 Toll-like receptors in drug-naïve non-affective first episode psychosis individuals: a 3-month study

2020 ◽  
Author(s):  
Maria Juncal-Ruiz ◽  
Laura Riesco-Davila ◽  
Mariluz Ramirez-Bonilla ◽  
Victor Ortiz-Garcia de la Foz ◽  
Javier Vazquez-Bourgon ◽  
...  

Abstract Background: Toll-like receptors (TLRs) are a pivotal component of the innate immune system, which are expressed by various subsets of immune cell types, included central nervous system. There are few publications that have studied TLR expression and/or functionality in psychosis, of which most of them have been based on chronic schizophrenia individuals.Objectives: To compare the expression and functionality of 9TLRs in three peripheral blood mononuclear cells (PBMCs) (monocytes, B cells and T cells) within a sample of 33 drug-naïve FEP individuals and 26 healthy volunteers, at baseline and after 3-month of antipsychotic treatment.Methods: The expression of TLR1-9 was assessed by flow cytometry. For the assessment of the TLR functionality (measured as intracellular production of IL-1β, IL-6 and TNF-α following TLR stimulation), cells collected in sodium heparin tubes were polyclonally stimulated for 18h with different agonists for human TLR1–9.Results: Patients showed a lower expression of TLR5 and TLR8 on the three PBMCs at baseline and after 3-month of treatment regarding healthy volunteers (all ps <0.01). We also found less production of some intracellular pro-inflammatory cytokines (especially TNF-α) after TLR stimulation in patients at both baseline and following the medication (all ps <0.01). We have not found differences in the intra-subject analyses after 3-month of treatment.Conclusions: Drug-naive patients with schizophrenia spectrum disorders show lower expression of specific TLR receptors as well as lower intracellular concentrations of some pro-inflammatory cytokines after TLR stimulation. These findings may be a consequence of an excessive cell stimulation via exogenous ligands (such as pathogens) and/or endogenous ligands (such as autoimmunity) in such a way that PBMCs could be exhausted to be activated in the in vitro analyses.

2020 ◽  
Vol 21 (17) ◽  
pp. 6106
Author(s):  
Maria Juncal-Ruiz ◽  
Laura Riesco-Davila ◽  
Javier Vazquez-Bourgon ◽  
Victor Ortiz-Garcia de la Foz ◽  
Jacqueline Mayoral-Van Son ◽  
...  

Toll-like receptors (TLRs) are a pivotal component of the innate immune system that seem to have a role in the pathogenesis of psychosis. The purpose of this work was to compare the expression and functionality of 9 TLRs in three peripheral blood mononuclear cells (PBMCs) (monocytes, B cells, and T cells) between 33 drug-naïve first-episode psychosis (FEP) individuals and 26 healthy volunteers, at baseline and after 3-month of antipsychotic treatment. The expression of TLRs 1–9 were assessed by flow cytometry. For the assessment of the TLR functionality, cells collected in sodium heparin tubes were polyclonally stimulated for 18 h, with different agonists for human TLR1–9. The results of our study highlight the role that TLR5 and TLR8 might play in the pathophysiology of psychosis. We found a lower expression of these receptors in FEP individuals, regarding healthy volunteers at baseline and after 3-month of treatment on the three PBMCs subsets. Most TLRs showed a lower functionality (especially reduced intracellular levels of TNF-α) in patients than in healthy volunteers. These results, together with previous evidence, suggest that individuals with psychosis might show a pattern of TLR expression that differs from that of healthy volunteers, which could vary according to the intensity of immune/inflammatory response.


2009 ◽  
Vol 102 (2) ◽  
pp. 201-206 ◽  
Author(s):  
María Monagas ◽  
Nasiruddin Khan ◽  
Cristina Andrés-Lacueva ◽  
Mireia Urpí-Sardá ◽  
Mónica Vázquez-Agell ◽  
...  

Oligomers and polymers of flavan-3-ols (proanthocyanidins) are very abundant in the Mediterranean diet, but are poorly absorbed. However, when these polyphenols reach the colon, they are metabolised by the intestinal microbiota into various phenolic acids, including phenylpropionic, phenylacetic and benzoic acid derivatives. Since the biological properties of these metabolites are not completely known, in the present study, we investigated the effect of the following microbial phenolic metabolites: 3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 3-hydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid and 4-hydroxyhippuric acid (4-HHA), on modulation of the production of the main pro-inflammatory cytokines (TNF-α, IL-1β and IL-6). The production of these cytokines by lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMC) pre-treated with the phenolic metabolites was studied in six healthy volunteers. With the exception of 4-HHA for TNF-α secretion, only the dihydroxylated compounds, 3,4-DHPPA and 3,4-DHPAA, significantly inhibited the secretion of these pro-inflammatory cytokines in LPS-stimulated PBMC. Mean inhibition of the secretion of TNF-α by 3,4-DHPPA and 3,4-DHPAA was 84·9 and 86·4 %, respectively. The concentrations of IL-6 in the culture supernatant were reduced by 88·8 and 92·3 % with 3,4-DHPPA and 3,4-DHPAA pre-treatment, respectively. Finally, inhibition was slightly higher for IL-1β, 93·1 % by 3,4-DHPPA and 97·9 % by 3,4-DHPAA. These results indicate that dihydroxylated phenolic acids derived from microbial metabolism present marked anti-inflammatory properties, providing additional information about the health benefits of dietary polyphenols and their potential value as therapeutic agents.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Amany Sayed Maghraby

The present review discusses the immune signals via toll like receptors (TLRs) against 2019nCoV. We researched using different database, up to June 18th, 2020. All the included articles were published in English language. The outcome of this review, that some TLRs agonists or antagonists are progressed as drugs to combat and down regulating TLRs immune signals respectively. TLRs 3 and 4 recognized 2019nCoV spike protein through immune and molecular signals that leading to immune stimulation of pro-inflammatory cytokines and even the immune fever. While the TLRs7 and 8 recognized single-stranded ribonucleic acids (ssRNAs) leading to elevation of the tumour necrosis factor α (TNF-α), interleukin (IL)-6 and -12 levels. TLRs agonists or antagonists utilized as immunotherapeutic targets against 2019nCoV via TLRs signals. Chloroquine and hydroxychloroquine; the approval compounds for 2019nCoV therapy can be inhibiting the class II major histocompatibility complex molecules expression and antigen presentation and even immune suppressions of the pro-inflammatory cytokines profile.


2018 ◽  
Vol 51 (2) ◽  
pp. 979-990 ◽  
Author(s):  
Chun Tang ◽  
Xiaohua Wang ◽  
Yingying Xie ◽  
Xiaoyan Cai ◽  
Na Yu ◽  
...  

Background/Aims: Increased production of multiple pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, plays an essential pathogenic role in the progression of systemic lupus erythematosus (SLE). Recent studies have characterized itaconate as a novel and potent nuclear-factor-E2-related factor 2 (Nrf2) activator that activates Nrf2 signaling by alkylating cysteine residues on Keap1 (Kelch-like ECH-associated protein 1). Methods: THP-1 human macrophages and peripheral blood mononuclear cells (PBMCs) of SLE patients were treated with 4-octyl itaconate (OI). Nrf2 signaling activation was tested by qPCR assay and western blotting. mRNA expression and the production of multiple pro-inflammatory cytokines were tested by qPCR and enzyme-linked immunosorbent assays, respectively. Nuclear factor (NF)-κB activation was tested by the p65 DNA-binding assay. Results: We demonstrated that OI, the cell-permeable derivative of itaconate, induced Keap1-Nrf2 dissociation, Nrf2 protein accumulation, and nuclear translocation, which enabled the transcription and expression of multiple Nrf2-dependentantioxidant enzymes (heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase modifier subunit) in THP-1 human macrophages. OI also induced significant Nrf2 activation in SLE patient-derived PBMCs. OI pretreatment inhibited mRNA expression and the production of multiple pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in SLE patient-derived PBMCs and lipopolysaccharide (LPS)-activated THP-1 cells. OI potently inhibited NF-κB activation in SLE patient-derived PBMCs and LPS-activated THP-1 cells. Importantly, Nrf2 silencing (by targeted short hairpin RNA) or knockout (by CRISPR/Cas9 gene-editing method) almost abolished OI-induced anti-oxidant and anti-inflammatory actions in SLE patient-derived PBMCs and LPS-activated THP-1 cells. Conclusion: OI activates Nrf2 signaling to inhibit the production of pro-inflammatory cytokines in human macrophages and SLE patient-derived PBMCs. OI and itaconate could have important therapeutic value for the treatment of SLE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Zhang ◽  
Han Shi ◽  
Ge Yang ◽  
Yongfeng Yang ◽  
Wenqiang Li ◽  
...  

AbstractThe indoleamine 2,3-dioxygenase (IDO) enzyme is the first rate-limiting enzyme of the tryptophan degradation pathway in which dysfunction of neuroactive metabolites has been implicated in the pathophysiology of schizophrenia. Inflammatory molecules such as pro-inflammatory cytokines could enhance the activity of IDO. There are few studies on the expression of IDO levels and its correlation with levels of inflammatory cytokines in first-episode drug-naive patients with schizophrenia. One hundred inpatients (female = 33, male = 67) with first-episode drug-naive schizophrenia entered a 6-week, double-blind, randomized, placebo-controlled clinical trial. All individuals were assigned celecoxib or placebo combined with risperidone. Serum levels of IDO and six inflammatory cytokines (IL-1β, IL-6, TNF-α IL-17, IL-4, and INF-γ) were measured. The Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of psychotic symptoms. Compared to healthy subjects, patients had significantly elevated levels of IDO and six cytokines at baseline. Over the 6-week treatment period, the decrease in the levels of IDO and TNF-α and the improvement in the PANSS total score, positive scores, and negative scores in the celecoxib group were significantly greater than in the placebo group. There was a significantly positive correlation between IDO levels and the PANSS negative scores and between IDO levels and TNF-α and IFN-γ levels in the celecoxib group. These findings showed abnormal expression of IDO levels which correlated with negative symptoms and pro-inflammatory cytokine levels in patients with first-episode drug-naive schizophrenia, suggesting the important role of IDO in the pathological mechanism of schizophrenia. Registration number: ChiCTR2000041403.


2020 ◽  
Vol 90 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Michael J. Haas ◽  
Marilu Jurado-Flores ◽  
Ramadan Hammoud ◽  
Victoria Feng ◽  
Krista Gonzales ◽  
...  

Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document