scholarly journals Antiparasitic potential of alternative treatments against larval stages of Lernaea cyrpiancea

Author(s):  
William Eduardo Furtado ◽  
Lucas Cardoso ◽  
Paula Brando de Medeiros ◽  
Nicollas Breda Lehmann ◽  
Elisabeth de Aguiar Bertaglia ◽  
...  

Abstract This study evaluated the potential of alternative treatments against larval stages of Lernaea cypriancea. For in vitro test, the nanoemulsified oils of Pinus sp. acicule and resin were evaluated, along with Biogermex® (commercial product based on citrus biomass). For this, the motility of five larvae of the same stage (nauplii or copepodite) were evaluated in a 96-well microplate. Using the best results, on the in vivo test, fries of Rhamdia quelen were submitted to a long-term immersion bath (96 h) containing different concentrations of the product diluted directly in the water. It was possible to notice the antiparasitic potential of the resin and the acicule of Pinus sp., as well as the citrus biomass extract against the parasites. The nanoemulsified oils successfully inhibited the development of nauplii (10 mg L− 1 in 24 h) and the fries showed to be tolerant to the presence of the compound (LC50 96h − 16.74 mg L− 1). The concentration of 30.5 mg L− 1 of Biogermex® eliminated the copepodites within 24 h, being more efficient than Pinus sp. when tested at the same stage, at the times analyzed. The results obtained indicate a potential use of these compounds as prophylactic agents against L. cyprinacea.

2021 ◽  
pp. 22-25
Author(s):  
Miguel Salavert Lletí ◽  
◽  
Víctor García-Bustos ◽  
Laura Morata Ruiz ◽  
Marta Dafne Cabañero-Navalon

The most relevant information on the clinical uses of tedizolid from studies published in the last 18 months is presented in this brief review. The most important data indicate better tolerance and safety profile of long-term therapeutic regimes in off-label indications, such as osteoarticular infections and those caused by mycobacteria. Its lower risk of hazardous interactions compared to linezolid should be emphasized. Furthermore, tedizolid in its combination with rifampicin shows a more favourable way of acting as demonstrated in vitro and in vivo studies. A recent trial also opens the door for its potential use in nosocomial pneumonia caused by Gram-positive bacteria.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3747
Author(s):  
Katarzyna Herman ◽  
Marta Wujczyk ◽  
Maciej Dobrzynski ◽  
Dorota Diakowska ◽  
Katarzyna Wiglusz ◽  
...  

The issue concerning the tooth decay is ongoing, therefore the study of materials with potential use in its prevention is crucial. This study aimed to analyze the long-term release of fluoride from synthesized nanofluorapatite in various in vitro environments for its potential use in dental materials. We placed 100 mg samples in 0.9% NaCl or deionized water and incubated them at 37 °C or 22 °C for 12 weeks. F− levels were read at 1, 3, 24, 48, 72, and 96 h, and thereafter weekly. The levels of F− released at specific time intervals, as well as their cumulative values were compared. In a solution of 0.9% NaCl at 22 °C, there were no significant differences in the amount of F− released in the assessed time intervals, while at 37 °C, the highest value was read after 24 h (0.0697 ppm + 0.0006; p < 0.05). In deionized water, the highest amount of F− at 22 °C was read after 4 weeks (0.0776 ppm + 0.0028; p < 0.05), and at 37 °C, it was also the highest after 4 weeks (0.0910 ppm + 0.0156; p < 0.05). Under the same conditions, after 5 weeks the cumulative level of F− released (0.6216 ppm + 0.0085) significantly increased (p < 0.05), when compared to the samples placed in 0.9% NaCl at 37 °C and 22 °C (0.5493 ppm + 0.0321 and 0.5376 ppm + 0.0234, respectively). FAp releases F− for a long period of time in all assessed environments, therefore it is advised to continue testing in vivo models. Due to the probable remineralization effect towards hard tooth tissues, fluorapatite can be used in the prevention and treatment of dental caries and dentin hypersensitivity.


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marisa Nacke ◽  
Emma Sandilands ◽  
Konstantina Nikolatou ◽  
Álvaro Román-Fernández ◽  
Susan Mason ◽  
...  

AbstractThe signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


2021 ◽  
Vol 22 (13) ◽  
pp. 6663
Author(s):  
Maurycy Jankowski ◽  
Mariusz Kaczmarek ◽  
Grzegorz Wąsiatycz ◽  
Claudia Dompe ◽  
Paul Mozdziak ◽  
...  

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells’ application in regenerative medicine.


2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Muh-Lii Liang ◽  
Tsung-Han Hsieh ◽  
Tai-Tong Wong

Abstract BACKGROUND Glial-lineage tumors constitute a heterogeneous group of neoplasms, comprising gliomas, oligodendrogliomas, and ependymomas, which account for 40%–50% of all pediatric central nervous system tumors. Advances in modern neuro-oncological therapeutics are aimed at improving neoadjuvant chemotherapy and deferring radiotherapy because radiation exposure may cause long-term side effects on the developing brain in young children. Despite aggressive treatment, more than half the high-grade gliomas (pHGGs) and one-third of ependymomas exhibit recurrence within 2 years of initial treatment. METHODS By using integrated bioinformatics and through experimental validation, we found that at least one gene among CCND1, CDK4, and CDK6 was overexpressed in pHGGs and ependymomas. RESULTS The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell cycle–related and DNA repair–related gene expression, which was determined through RNA-seq analysis. The efficiency of abemaciclib was validated in vitro in pHGGs and ependymoma cells and in vivo by using subcutaneously implanted ependymoma cells from patient-derived xenograft (PDX) in mouse models. Abemaciclib demonstrated the suppression of RB phosphorylation, downstream target genes of E2F, G2M checkpoint, and DNA repair, resulting in tumor suppression. CONCLUSION Abemaciclib showed encouraging results in preclinical pediatric glial-lineage tumors models and represented a potential therapeutic strategy for treating challenging tumors in children.


Sign in / Sign up

Export Citation Format

Share Document