scholarly journals Spatiotemporal imaging of anisotropic charge transfer in photocatalyst particles

Author(s):  
Can Li ◽  
Ruotian Chen ◽  
Zefeng Ren ◽  
Yu Liang ◽  
Thomas Dittrich ◽  
...  

Abstract Water-splitting reactions using photocatalyst particles are promising routes for solar fuel production1-4. Photoinduced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency5; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometers to micrometers and from femtoseconds to seconds6-8. Although the steady-state charge distribution on single photocatalyst particles has been mapped using microscopic techniques9-11 and the averaged charge transfer dynamics in photocatalyst aggregations have been revealed via time-resolved spectroscopy12,13, spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and the mechanism of charge transfer is unknown. Here, we report spatiotemporally resolved surface photovoltage measurements on Cu2O photocatalyst particles to map complete charge transfer processes throughout the femtosecond to second time scale at the single-particle level. We found that photogenerated electrons are transferred to the catalytic surface ballistically on a sub-picosecond timescale and are retained at this location for the duration, whereas photogenerated holes are transferred to a spatially separated surface and stabilized via selective trapping on a microsecond timescale. We demonstrate that these ballistic electron transfer and anisotropic trapping regimes, which challenge the classical perception of the drift–diffusion model, contribute to efficient charge separation in photocatalysis and improve the photocatalytic performance. We anticipate our findings to demonstrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gordon J. Hedley ◽  
Tim Schröder ◽  
Florian Steiner ◽  
Theresa Eder ◽  
Felix J. Hofmann ◽  
...  

AbstractThe particle-like nature of light becomes evident in the photon statistics of fluorescence from single quantum systems as photon antibunching. In multichromophoric systems, exciton diffusion and subsequent annihilation occurs. These processes also yield photon antibunching but cannot be interpreted reliably. Here we develop picosecond time-resolved antibunching to identify and decode such processes. We use this method to measure the true number of chromophores on well-defined multichromophoric DNA-origami structures, and precisely determine the distance-dependent rates of annihilation between excitons. Further, this allows us to measure exciton diffusion in mesoscopic H- and J-type conjugated-polymer aggregates. We distinguish between one-dimensional intra-chain and three-dimensional inter-chain exciton diffusion at different times after excitation and determine the disorder-dependent diffusion lengths. Our method provides a powerful lens through which excitons can be studied at the single-particle level, enabling the rational design of improved excitonic probes such as ultra-bright fluorescent nanoparticles and materials for optoelectronic devices.


2012 ◽  
Vol 3 ◽  
pp. 629-636 ◽  
Author(s):  
Gilad Gotesman ◽  
Rahamim Guliamov ◽  
Ron Naaman

We studied the photoluminescence and time-resolved photoluminescence from self-assembled bilayers of donor and acceptor nanoparticles (NPs) adsorbed on a quartz substrate through organic linkers. Charge and energy transfer processes within the assemblies were investigated as a function of the length of the dithiolated linker (DT) between the donors and acceptors. We found an unusual linker-length-dependency in the emission of the donors. This dependency may be explained by charge and energy transfer processes in the vertical direction (from the donors to the acceptors) that depend strongly on charge transfer processes occurring in the horizontal plane (within the monolayer of the acceptor), namely, parallel to the substrate.


RSC Advances ◽  
2016 ◽  
Vol 6 (62) ◽  
pp. 57293-57305 ◽  
Author(s):  
Jian-Yong Liu ◽  
Xue-Ni Hou ◽  
Ye Tian ◽  
Lizhi Jiang ◽  
Shuiquan Deng ◽  
...  

The bis(triphenylamine)–BODIPY–C60 artificial photosynthetic system has been prepared and studied for its photoinduced transfer processes in polar and nonpolar solvents using various steady-state and time-resolved spectroscopic techniques.


Author(s):  
TORSTEN OEKERMANN ◽  
DERCK SCHLETTWEIN ◽  
NILS I. JAEGER ◽  
DIETER WÖHRLE

The influence of electron-withdrawing substituents on the photoelectrochemical properties of phthalocyanines is shown in a comparison between hexadecafluorophthalocyaninatozinc(II) ( F 16 PcZn ) and the unsubstituted phthalocyaninatozinc(II) ( PcZn ). The role of surface states in the photoelectrochemistry of both materials has been investigated by time-resolved photocurrent measurements in the millisecond range. The charging and discharging of surface states could clearly be seen as spikes at the beginning and the end of illumination. Surface states were filled with photogenerated electrons at PcZn and with photogenerated holes at F 16 PcZn . In the steady state under illumination only cathodic photocurrents were detected at PcZn , while at F 16 PcZn both cathodic and anodic photocurrents were observed. An adsorption step of electroactive species prior to the charge transfer was derived from the dependence of the steady state photocurrents on the electrolyte concentration for both materials. The concentration dependence of the charging and discharging currents, however, showed that charge transfer from surface states to the electrolyte occurs at PcZn , while at F 16 PcZn the surface states only represent recombination centres.


RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68728-68735 ◽  
Author(s):  
Jin Luo ◽  
Xiaosong Zhou ◽  
Lin Ma ◽  
Xuyao Xu

The efficient charge transfer at the interface of CeO2/P-C3N4composite catalyst due to the synergistic effect between P-C3N4and CeO2, which leads to an effective photogenerated electrons–hole pairs separation.


2019 ◽  
Author(s):  
Junjie Liu ◽  
Dvira Segal

Charge transfer in donor-bridge-acceptor (DBA) structures typically takes place through the combination of donor-bridge and bridge-acceptor overlap integrals forming an effective, indirect electronic coupling between the donor (D) and acceptor (A) moieties. Here, we examine the effects of an additional direct DA electronic coupling on charge transfer processes in DBA systems with local interaction to thermal baths. First, using the exact Nakajima-Zwanzig master equation (NZME) for the reduced density matrix, we rigorously define probability currents as the coherent part of the NZME, thereby allowing us to quantify the contribution of the different electronic pathways (direct and indirect) to the charge transfer dynamics. Focusing on two minimal DBA systems of three sites (V and L models), and adopting well-developed methods, we find that the interplay between different transfer pathways can be assessed by the McConnell formula in the weak systembath coupling regime. We then demonstrate that the combination of indirect and direct donor-acceptor coupling either enhances or leads to a destructive quantum interference effect on charge transport processes, depending on the energy landscape of the DBA system.<br>


2020 ◽  
Author(s):  
Jennifer Zimara ◽  
Hendrik Stevens ◽  
Rainer Oswald ◽  
Serhiy Demeshko ◽  
Sebastian Dechert ◽  
...  

The dynamics of photo-driven charge transfer-induced spin transition (CTIST) in two Fe/Co Prussian Blue Analogues (PBAs) is revealed by femtosecond IR and UV/vis pump-probe spectroscopy. Depending on temperature the known tetranuclear square-type complex [Co<sub>2</sub>Fe<sub>2</sub>(CN)<sub>6</sub>(tp*)<sub>2</sub>(4,4’-dtbbpy)<sub>4</sub>](PF<sub>6</sub>)<sub>2</sub> (<b>1</b>) exists in two electronic states. In acetonitrile solution at <240 K the low temperature (<b>LT</b>) phase is prevalent consisting of low-spin Fe(II) and low-spin Co(III), [Fe<sup>II</sup><sub>LS</sub>Co<sup>III</sup><sub>LS</sub>]<sub>2</sub>. Temperature rise causes thermally induced CTIST towards the high temperature (<b>HT</b>) phase consisting of low-spin Fe(III) and high-spin Co(II), [Fe<sup>III</sup><sub>LS</sub>Co<sup>II</sup><sub>HS</sub>]<sub>2</sub>, being prevalent at >300 K. Photo-excitation into the intervalence charge transfer (IVCT) band of the <b>LT</b> phase at 800 nm induces electron transfer in one Fe-Co edge of PBA <b>1</b> and produces a [Fe<sup>III</sup><sub>LS</sub>Co<sup>II</sup><sub>LS</sub>] intermediate which by spin crossover (SCO) is stabilized within 400 fs to a long-lived (>1 ns) [Fe<sup>III</sup><sub>LS</sub>Co<sup>II</sup><sub>HS</sub>]. In contrast, IVCT excitation of the <b>HT</b> phase at 400 nm generates a [Fe<sup>II</sup><sub>LS</sub>Co<sup>III</sup><sub>HS</sub>] species with a lifetime of 3.6 ps. Subsequent back-electron transfer populates the vibrationally hot ground state, which thermalizes within 8 ps. The newly synthesized dinuclear PBA, [CoFe(CN)<sub>3</sub>(tp*)(pz*<sub>4</sub>Lut)]ClO<sub>4</sub> (<b>2</b>), provides a benchmark of the <b>HT</b> phase of <b>1</b>, i.e. [Fe<sup>III</sup><sub>LS</sub>Co<sup>II</sup><sub>HS</sub>], as verified by variable temperature magnetic susceptibility measurements and <sup>57</sup>Fe Mößbauer spectroscopy. The photo-induced charge transfer dynamics of PBA <b>2</b> indeed is almost identical to that of the <b>HT</b> phase of phase of PBA <b>1</b> with a lifetime of the excited [Fe<sup>II</sup><sub>LS</sub>Co<sup>III</sup><sub>HS</sub>] species of 3.8 ps.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744053 ◽  
Author(s):  
Wei-Long Xu ◽  
Hongchun Yuan ◽  
Jin Xiao ◽  
Chao Xiong ◽  
Xifang Zhu

Morphology and photophysics of polymers are critical to the performance of organic optoelectronics. In this work, poly(3-thiophene) (P3HT) nanoparticles were successfully fabricated by the miniemulsion and reprecipitation methods. The P3HT nanoparticles demonstrated uniform distribution with the domain size of [Formula: see text][Formula: see text]40 nm. The photophysics of P3HT nanoparticles was investigated by absorption and steady-state and time-resolved PL spectroscopy. P3HT nanoparticles showed more ordered and longer conjugation length than pristine P3HT. At the same time, P3HT nanoparticles showed aggregate species which are favorable for interchain charge transfer. The organic/inorganic hybrid photodetectors based on P3HT and TiO2 nanorods were fabricated. The superior performance of the photodetector based on P3HT nanoparticle and TiO2 nanorods comes from the efficient charge transfer and large donor/acceptor interface.


Sign in / Sign up

Export Citation Format

Share Document