Re-sequencing and transcriptomic analysis reveals rich DNA sequence variation and differential gene expression between varieties of Ziziphus jujuba

Author(s):  
Na Li ◽  
Yuqin Song ◽  
Jie Li ◽  
Ruijie Hao ◽  
Xinxin Feng ◽  
...  

Abstract Background: Jujube is one of the characteristic fruit tree species in China. ‘Linhuang No. 1’, a cracking-resistant cultivar, and ‘Muzao’, a cracking-susceptible cultivar, were selected as materials by previous study. Whole-genome re-sequencing and transcriptome of ‘Linhuang No. 1’ and ‘Muzao’ allow the screening out of differently expressed genes with different gene structures between them. It could be helpful in explaining divergence/similarity of cracking resistance between the two cultivars. Results: There are 664,129 mutation sites between ‘Linhuang No. 1’ and ‘Muzao’ by re-sequencing. To determine the genetic relationship of ‘Linhuang 1’, ‘Muzao’ and reference genome ‘Dongzao’, the characteristic mutation sites were analyzed by principal component analysis. The genetic relationship between ‘Linhuang No. 1’ and ‘Muzao’ was closer than that with ‘Dongzao’. A total of 431 differentially expressed genes was screened by transcriptomics, and 19 differentially expressed genes were screened by combining the transcriptomics with re-sequencing analysis. LOC107427052 (encoding nitrite reductase) was determined by KEGG enrichment analysis for further study. Conclusions: The large base insertion was not in the domain region of the LOC107427052 gene CDS region. As verified by the finding that the base insertion did not affect protein translation. Our study has laid a foundation for the analysis of genetic information and the comparative nitrite metabolism of ‘Linhuang No. 1’ and ‘Muzao’.

2021 ◽  
Author(s):  
Na Li ◽  
Yuqin Song ◽  
Jie Li ◽  
Ruijie Hao ◽  
Xinxin Feng ◽  
...  

Abstract BackgroundJujube is one of the characteristic fruit tree species in China. ‘Linhuang No. 1’, a cracking-resistant cultivar, and ‘Muzao’, a cracking-susceptible cultivar, were selected as materials by previous study. Whole-genome re-sequencing and transcriptome of ‘Linhuang No. 1’ and ‘Muzao’ allow the screening out of differently expressed genes with different gene structures between them. It could be helpful in explaining divergence/similarity between the two cultivars. ResultsThere are 664,129 mutation sites between ‘Linhuang No. 1’ and ‘Muzao’ by re-sequencing. To determine the genetic relationship of ‘Linhuang 1’, ‘Muzao’ and reference genome ‘Dongzao’, the characteristic mutation sites were analyzed by principal component analysis. The genetic relationship between ‘Linhuang No. 1’ and ‘Muzao’ was closer than that with ‘Dongzao’. 19 differentially expressed genes were screened by combining the transcriptomics with re-sequencing analysis. LOC107427052 (encoding nitrite reductase) was determined by KEGG enrichment analysis for further study. The large base insertion was not in the domain region of the LOC107427052 gene CDS region. As verified by the finding that the base insertion did not affect protein translation. LOC107427052 gene expression levels, the nitrite reductase activities and the nitrite content of ‘Muzao’ were significantly higher than those of ‘Linhuang No. 1’ at young fruit stage. There was no significant difference in the product ammonia of nitrite reductase between the two varieties. ConclusionsOur study has laid a foundation for the analysis of genetic information and the comparative nitrite metabolism of ‘Linhuang No. 1’ and ‘Muzao’.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Na Li ◽  
Yuqin Song ◽  
Jie Li ◽  
Ruijie Hao ◽  
Xinxin Feng ◽  
...  

Abstract Background Jujube is a typical fruit tree species from China. ‘Muzao’, a cracking-susceptible cultivar, and ‘Linhuang No. 1’, a cracking-resistant cultivar, were selected in a previous study as contrasting research materials. Whole-genome resequencing and transcriptomic analysis of ‘Linhuang No. 1’ and ‘Muzao’ allowed the identification of differentially expressed genes with different gene structures between the two cultivars and could be helpful in explaining the differences and similarities between the two cultivars. Results Resequencing identified 664,129 polymorphic variable sites between ‘Linhuang No. 1’ and ‘Muzao’. To determine the genetic relationship among ‘Linhuang No. 1’, ‘Muzao’ and the jujube genome reference cultivar ‘Dongzao’, the characteristic polymorphic variable sites were analysed by principal component analysis. The genetic relationship between ‘Linhuang No. 1’ and ‘Muzao’ was closer than that of either variety and ‘Dongzao’. Nineteen differentially expressed genes were identified by combining transcriptomic analysis with resequencing analysis. LOC107427052 (encoding a nitrite reductase) was identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for further study. The identified insertion was not in the domain region of the LOC107427052 gene coding sequence (CDS) region and was verified by the finding that the insertion did not affect translation of the protein. The LOC107427052 gene expression levels, nitrite reductase activities and nitrite contents of ‘Muzao’ were significantly higher than the corresponding values of ‘Linhuang No. 1’ at the young fruit stage. There was no significant difference in the quantity of the product of nitrite reductase, namely, ammonia, between the two cultivars. Conclusions The present study was the first to explore the differences between different jujube cultivars (‘Linhuang No. 1’ and ‘Muzao’) by combining genome resequencing and transcriptomics. LOC107427052 (encoding a nitrite reductase) was characterized by KEGG enrichment analysis. The insertion in the CDS region of the LOC107427052 gene provides a new direction for the study of nitrogen metabolism in jujube. Our study has laid a foundation for the comparative analysis of nitrite metabolism between the jujube cultivars ‘Linhuang No. 1’ and ‘Muzao’.


2021 ◽  
Author(s):  
Chengang Guo ◽  
Zhimin wei ◽  
Wei Lyu ◽  
Yanlou Geng

Abstract Quinoa saponins have complex, diverse and evident physiologic activities. However, the key regulatory genes for quinoa saponin metabolism are not yet well studied. The purpose of this study was to explore genes closely related to quinoa saponin metabolism. In this study, the significantly differentially expressed genes in yellow quinoa were firstly screened based on RNA-seq technology. Then, the key genes for saponin metabolism were selected by gene set enrichment analysis (GSEA) and principal component analysis (PCA) statistical methods. Finally, the specificity of the key genes was verified by hierarchical clustering. The results of differential analysis showed that 1654 differentially expressed genes were achieved after pseudogenes deletion. Therein, there were 142 long non-coding genes and 1512 protein-coding genes. Based on GSEA analysis, 116 key candidate genes were found to be significantly correlated with quinoa saponin metabolism. Through PCA dimension reduction analysis, 57 key genes were finally obtained. Hierarchical cluster analysis further demonstrated that these key genes can clearly separate the four groups of samples. The present results could provide references for the breeding of sweet quinoa and would be helpful for the rational utilization of quinoa saponins.


2018 ◽  
Vol 27 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Kathleen M Schieffer ◽  
Bryan P Kline ◽  
Leonard R Harris ◽  
Sue Deiling ◽  
Walter A Koltun ◽  
...  

Background & Aims: Diverticulitis is the chronic inflammation of diverticula. Whether the pathophysiology of earlier-onset patients differs from later-onset patients is unknown. We profiled the colonic transcriptomes of these two patient populations to gain insight into the molecular underpinnings of diverticulitis. Methods: We conducted deep RNA sequencing (RNA-seq) on colonic segments surgically resected from earlier-onset (<42 years old, n=13) and later-onset (>65 years old, n=13) diverticulitis patients. We used bioinformatic approaches to cluster the patients based on the relationship of differentially expressed genes and to inform on the molecular pathways that segregated the clusters. Results: Principal component analysis identified three patient clusters; diverticulitis later-onset (DVT-LO), diverticulitis mixed-onset (DVT-MO), and diverticulitis earlier-onset (DVT-EO). The patients comprising DVT-EO, which was the majority of earlier-onset patients, displayed increased expression of anti-viral response genes. This finding was confirmed using an independent weighted co-expression network analysis (WGCNA) of differentially expressed genes. Conclusions: We found that the majority of patients with earlier-onset disease contained elevated expression of host genes involved in the anti-viral response. Thus, susceptibility to a viral pathogen may offer one explanation why some individuals develop diverticulitis at an earlier age.


2018 ◽  
Author(s):  
Jie Chen ◽  
Chaofeng Xing ◽  
Haosen Wang ◽  
Zengmeng Zhang ◽  
Daolun Yu ◽  
...  

AbstractTranscription factor ZBTB38 belongs to the zinc finger protein family and contains the typical BTB domains. Only several predicted BTB domain-containing proteins encoded in the human genome have been functionally characterized. No relevant studies have been reported concerning the effect of down-regulated ZBTB38 gene expression on tumor cells through transcriptome analysis. In the present study, 2,438 differentially expressed genes in ZBTB38−/− SH-SY5Y cells were obtained via high-throughput transcriptome sequencing analysis, 83.5% of which was down-regulated. Furthermore, GO functional clustering and KEGG pathway enrichment analysis of these differentially expressed genes (DEGs) revealed that the knocked-down transcription factor ZBTB38 interacted with p53 and arrested cell cycles to inhibit the proliferation of the tumor cells. Besides, it also significantly down-regulated the expressions of PTEN, a “molecular switch” of the PI3K/Akt signaling pathway, and RB1CC1, the key gene for autophagy initiation, and blocked autophagy to accelerate the apoptosis of tumor cells. ZBTB38−/− SH-SY5Y cells were investigated at the whole transcriptome level and key DEGs were screened in the present study for the first time, providing a theoretical foundation for exploring the molecular mechanism of inhibition of tumor cell proliferation and targeted anti-tumor therapies.


2019 ◽  
Vol 15 ◽  
pp. 117693431983881
Author(s):  
Xiangfeng He ◽  
Wanyue Li ◽  
Wenzhu Zhang ◽  
Xiaotong Jin ◽  
Awraris Getachew Shenkute ◽  
...  

Lily basal rot, caused by Fusarium oxysporum f. sp. lilii, is one of the most serious diseases of lily. Although the lily germplasm which is resistant to F. oxysporum has been used in disease-resistant breeding, few studies on its molecular mechanism of disease resistance have been reported. To comprehensively study the mechanism of resistance to F. oxysporum, transcriptome sequencings of root tissues from Lilium pumilum inoculated with F. oxysporum or sterile water for 6, 12, or 24 h were performed. A total of 50 GB of data were obtained from the transcriptome sequencings of the 6 L. pumilum samples, and 217 098 Unigenes were obtained after the de novo assembly, of which 38.36% Unigenes were annotated. The sequencing results showed that the numbers of differentially expressed genes at 6, 12, and 24 h after inoculation compared with the control were 111, 254, and 2500, respectively. The functional enrichment analysis of the differentially expressed genes showed that several pathways were involved in responses of L. pumilum, mainly including starch and sucrose metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, plant hormone signal transduction, flavonoid biosynthesis, vitamin B6 (VB6) biosynthesis, acid biosynthesis, proteasome, and ribosome. Transcription factor analysis revealed that the WRKY and ERF families played important roles in responses of L. pumilum to F. oxysporum. The results of this study elucidate the molecular responses to F. oxysporum in lily and lay a theoretical foundation for improving lily breeding and strategies for lily basal rot resistance.


Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Yuan ◽  
Shenqiang Hu ◽  
Liang Li ◽  
Chunchun Han ◽  
Hehe Liu ◽  
...  

Abstract Background Despite their important functions and nearly ubiquitous presence in cells, an understanding of the biology of intracellular lipid droplets (LDs) in goose follicle development remains limited. An integrated study of lipidomic and transcriptomic analyses was performed in a cellular model of stearoyl-CoA desaturase (SCD) function, to determine the effects of intracellular LDs on follicle development in geese. Results Numerous internalized LDs, which were generally spherical in shape, were dispersed throughout the cytoplasm of granulosa cells (GCs), as determined using confocal microscopy analysis, with altered SCD expression affecting LD content. GC lipidomic profiling showed that the majority of the differentially abundant lipid classes were glycerophospholipids, including PA, PC, PE, PG, PI, and PS, and glycerolipids, including DG and TG, which enriched glycerophospholipid, sphingolipid, and glycerolipid metabolisms. Furthermore, transcriptomics identified differentially expressed genes (DEGs), some of which were assigned to lipid-related Gene Ontology slim terms. More DEGs were assigned in the SCD-knockdown group than in the SCD-overexpression group. Integration of the significant differentially expressed genes and lipids based on pathway enrichment analysis identified potentially targetable pathways related to glycerolipid/glycerophospholipid metabolism. Conclusions This study demonstrated the importance of lipids in understanding follicle development, thus providing a potential foundation to decipher the underlying mechanisms of lipid-mediated follicle development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hangxia Jin ◽  
Xiaomin Yu ◽  
Qinghua Yang ◽  
Xujun Fu ◽  
Fengjie Yuan

AbstractPhytic acid (PA) is a major antinutrient that cannot be digested by monogastric animals, but it can decrease the bioavailability of micronutrients (e.g., Zn and Fe). Lowering the PA content of crop seeds will lead to enhanced nutritional traits. Low-PA mutant crop lines carrying more than one mutated gene (lpa) have lower PA contents than mutants with a single lpa mutant gene. However, little is known about the link between PA pathway intermediates and downstream regulatory activities following the mutation of these genes in soybean. Consequently, we performed a comparative transcriptome analysis using an advanced generation recombinant inbred line with low PA levels [2mlpa (mips1/ipk1)] and a sibling line with homozygous non-mutant alleles and normal PA contents [2MWT (MIPS1/IPK1)]. An RNA sequencing analysis of five seed developmental stages revealed 7945 differentially expressed genes (DEGs) between the 2mlpa and 2MWT seeds. Moreover, 3316 DEGs were associated with 128 metabolic and signal transduction pathways and 4980 DEGs were annotated with 345 Gene Ontology terms related to biological processes. Genes associated with PA metabolism, photosynthesis, starch and sucrose metabolism, and defense mechanisms were among the DEGs in 2mlpa. Of these genes, 36 contributed to PA metabolism, including 22 genes possibly mediating the low-PA phenotype of 2mlpa. The expression of most of the genes associated with photosynthesis (81 of 117) was down-regulated in 2mlpa at the late seed developmental stage. In contrast, the expression of three genes involved in sucrose metabolism was up-regulated at the late seed developmental stage, which might explain the high sucrose content of 2mlpa soybeans. Furthermore, 604 genes related to defense mechanisms were differentially expressed between 2mlpa and 2MWT. In this study, we detected a low PA content as well as changes to multiple metabolites in the 2mlpa mutant. These results may help elucidate the regulation of metabolic events in 2mlpa. Many genes involved in PA metabolism may contribute to the substantial decrease in the PA content and the moderate accumulation of InsP3–InsP5 in the 2mlpa mutant. The other regulated genes related to photosynthesis, starch and sucrose metabolism, and defense mechanisms may provide additional insights into the nutritional and agronomic performance of 2mlpa seeds.


Sign in / Sign up

Export Citation Format

Share Document