scholarly journals The role of soil types on the relation between individual soil properties and Fusarium wilt expression in 'Gros Michel' bananas

Author(s):  
Rafael Segura Mena ◽  
Jetse J. Stoorvogel ◽  
Jorge A. Sandoval F.

Abstract Aims This study looks whether the response of soil management (liming and nitrogen fertilization) on the incidence of Fusarium wilt (Foc Race 1) in Gros Michel banana (Musa AAA) is influenced by soil types. Methods The effect of inoculation with Foc Race 1 was studied in a factorial greenhouse trial with eight representative soil types of the Costa Rican banana region, two pH levels; and three levels of N-fertilization. After an 8-week period, plant biomass, leaf area, and a disease index were measured.Results There were significant effects of soil pH and N, and their interactions on disease expression. Low pH levels and high N-fertilization increased the disease expression. The response to changes in soil pH and N-fertilization differed considerably between the different soil types. Conclusions Although soil pH and N influence Fusarium wilt in banana, each soil type differs in its response to these soil properties. This complicates the development of standard soil management strategies in terms of e.g., N-fertilization and liming to mitigate or fight the disease.

Author(s):  
R. A. Segura-Mena ◽  
J. J. Stoorvogel ◽  
F. García-Bastidas ◽  
M. Salacinas-Niez ◽  
G. H. J. Kema ◽  
...  

AbstractFusarium oxysporum f. sp. cubense (Foc) causes Fusarium wilt in banana (Musa AAA). Foc Race 1 devastated the subgroup Gros Michel during the first half of the twentieth century. The Gros Michel was largely replaced by the resistant subgroup Cavendish in the 1950s. However, in the 1980s, Foc Tropical Race 4 started to spread affecting Cavendish bananas. No proper control measures have been found to deal with the disease. This paper re-takes an important research line from the 1950s to evaluate the potential of soil management for Fusarium wilt management. The role of soil properties on Fusarium wilt in bananas was studied in two greenhouse experiments. It was evaluated whether the influence of two main soil properties (pH and N) on Fusarium wilt is similar for Race 1 and Tropical Race 4. Two soil pH levels (lower than 5.2 and higher than 6.0) respectively ensured through acidification and liming; and three levels of N (ammonium nitrate, 33.5% N) weekly doses (low:0 N g, medium: 0.08 N g and high: 0.25 N g per plant) were achieved. The first experiment in Costa Rica confirmed the earlier results about the influence of soil pH and nitrogen on Fusarium wilt (Race 1) on Gros Michel bananas. The second experiment in The Netherlands evaluated the influence of pH and N on interactions between Foc (both Race 1 and Tropical Race 4) and Cavendish bananas. Results in both experiments showed that soil pH affected crop development and the disease. Besides, the interaction of the lower pH x the higher N accelerated the infection and reduced plant development. As such, the results showed that soil management has the potential to reduce the impacts of Fusarium wilt while dealing with Race 1 and Tropical Race 4 although it requires confirmation and further evaluation under field conditions.


2021 ◽  
Vol 13 (11) ◽  
pp. 6221
Author(s):  
Muyuan Ma ◽  
Yaojun Zhu ◽  
Yuanyun Wei ◽  
Nana Zhao

To predict the consequences of environmental change on the biodiversity of alpine wetlands, it is necessary to understand the relationship between soil properties and vegetation biodiversity. In this study, we investigated spatial patterns of aboveground vegetation biomass, cover, species diversity, and their relationships with soil properties in the alpine wetlands of the Gannan Tibetan Autonomous Prefecture of on the Qinghai-Tibetan Plateau, China. Furthermore, the relative contribution of soil properties to vegetation biomass, cover, and species diversity were compared using principal component analysis and multiple regression analysis. Generally, the relationship between plant biomass, coverage, diversity, and soil nutrients was linear or unimodal. Soil pH, bulk density and organic carbon were also significantly correlated to plant diversity. The soil attributes differed in their relative contribution to changes in plant productivity and diversity. pH had the highest contribution to vegetation biomass and species richness, while total nitrogen was the highest contributor to vegetation cover and nitrogen–phosphorus ratio (N:P) was the highest contributor to diversity. Both vegetation productivity and diversity were closely related to soil properties, and soil pH and the N:P ratio play particularly important roles in wetland vegetation biomass, cover, and diversity.


Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 158 ◽  
Author(s):  
Alison Bowen ◽  
Ryan Orr ◽  
Anna V. McBeath ◽  
Anthony Pattison ◽  
Paul N. Nelson

Soils are known to differ in suppressiveness to soil-borne diseases, but the suppressiveness or otherwise to Fusarium wilt of Australian soils used to grow bananas is unknown. In this work we tested the relative suppressiveness of six key soil types. Banana (Musa (AAB group) ‘Pome’, cultivar ‘Lady Finger’) was grown in pots of the soils inoculated or not with Fusarium oxysporum f.sp. cubense (Foc) ‘Race 1’. Sixteen weeks after inoculation the plants were harvested and disease severity was assessed by measuring discoloration within the rhizome. In the inoculated pots, disease severity was greatest in the alluvial Liverpool and Virgil soils and least in the basaltic origin Tolga soil. No disease was detected in the non-inoculated pots. Soils with the lowest disease severity had the highest root mass, irrespective of inoculation, and the largest (negative) effect of inoculation on root dry mass. Disease severity in inoculated pots was negatively correlated with soil clay content and β-glucosidase activity. The results indicate that the risk of Fusarium wilt negatively impacting banana growth differs between soils of the main Australian banana-growing region.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 582
Author(s):  
Ján Horák ◽  
Tatijana Kotuš ◽  
Lucia Toková ◽  
Elena Aydın ◽  
Dušan Igaz ◽  
...  

Recent findings of changing climate, water scarcity, soil degradation, and greenhouse gas emissions have brought major challenges to sustainable agriculture worldwide. Biochar application to soil proves to be a suitable solution to these problems. Although the literature presents the pros and cons of biochar application, very little information is available on the impact of repeated application. In this study, we evaluate and discuss the effects of initial and reapplied biochar (both in rates of 0, 10, and 20 t ha−1) combined with N fertilization (at doses of 0, 40, and 80 kg ha−1) on soil properties and N2O emission from Haplic Luvisol in the temperate climate zone (Slovakia). Results showed that biochar generally improved the soil properties such as soil pH(KCl) (p ≤ 0.05; from acidic towards moderately acidic), soil organic carbon (p ≤ 0.05; an increase from 4% to over 100%), soil water availability (an increase from 1% to 15%), saturated hydraulic conductivity (an increase from 5% to 95%). The effects were more significant in the following cases: repeated rather than single biochar application, higher rather than lower biochar application rates, and higher rather than lower N fertilization levels. Initial and repeated biochar applications, leading to N2O emissions reduction, can be related to increased soil pH(KCl).


2003 ◽  
Vol 83 (1) ◽  
pp. 131-137 ◽  
Author(s):  
G. H. Neilsen ◽  
E. J. Hogue ◽  
T. Forge ◽  
D. Neilsen

Changes in selected soil chemical and physical properties of a coarse-textured orchard soil were measured 7 yr after establishing different orchard soil management strategies which were deemed to be environmentally sound in a high-density apple orchard. Several locally available mulches and organic wastes applied to the soil surface were maintained and assessed as to their effect on tree performance and soil properties relative to a standard commercial practice involving maintenance of a weed-free herbicide strip (known as the “check” practice). The soil chemical status of these sandy soils was readily altered when large amounts of nutrients were contained in applied mulches and biosolids. Thus, elevated soil C [and cation exchange capacity (CEC)], N, P, Zn, Fe, Mn and Cu occurred after cumulative application of 90 t ha-1 of biosolids; soil pH and Ca content increased beneath a high-Ca shredded paper mulch, and soil was enriched in P and K beneath a high-PK alfalfa mulch. Small but statistically significant decreases in soil bulk density, and increases in wet aggregate stability and infiltration rate were measured for some non-check soil management treatments. Of most practical importance among the physical property changes was increased surface soil moisture retention capacity associated with shredded paper mulches applied over biosolids. Cumulative yield and long-term vigour exceeded control trees for all soil management treatments and were best for treatments that included application of a shredded paper mulch. Few measured soil properties were correlated with long-term tree performance except for several soil pH-related parameters. However, surface application of mulches and biosolids generally improved soil nutrient status and physical properties while maintaining or improving crop yield. Key words: Biosolids, Malus domestica Borkh., mulches, soil fertility, water retention capacity


1992 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
George J. Hochmuth

Efficient N management practices usually involve many potential strategies, but always involve choosing the correct amount of N and the coupling of N management to efficient water management. Nitrogen management strategies are integral parts of improved production practices recommended by land-grant universities such as the Institute of Food and Agricultural Sciences, Univ. of Florida. This paper, which draws heavily on research and experience in Florida, outlines the concepts and technologies for managing vegetable N fertilization to minimize negative impacts on the environment.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


2021 ◽  
Vol 11 (13) ◽  
pp. 5788
Author(s):  
Dominic Kwadwo Anning ◽  
Zhilong Li ◽  
Huizhen Qiu ◽  
Delei Deng ◽  
Chunhong Zhang ◽  
...  

Amino sugars are key microbial biomarkers for determining the contribution of microbial residues in soil organic matter (SOM). However, it remains largely unclear as to what extent inorganic nitrogen (N) fertilization can lead to the significant degradation of SOM in alkaline agricultural soils. A six-year field experiment was conducted from 2013 to 2018 to evaluate the effects of chronic N enrichment on microbial residues, amino sugars, and soil biochemical properties under four nitrogen (urea, 46% N) fertilization scenarios: 0 (no-N, control), 75 (low-N), 225 (medium-N), and 375 (high-N) kg N ha−1. The results showed that chronic N enrichment stimulated microbial residues and amino sugar accumulation over time. The medium-N treatment increased the concentration of muramic acid (15.77%), glucosamine (13.55%), galactosamine (18.84%), bacterial residues (16.88%), fungal residues (11.31%), and total microbial residues (12.57%) compared to the control in 2018; however, these concentrations were comparable to the high-N treatment concentrations. The ratio of glucosamine to galactosamine and of glucosamine to muramic acid decreased over time due to a larger increase in bacterial residues as compared to fungal residues. Microbial biomass, soil organic carbon, and aboveground plant biomass positively correlated with microbial residues and amino sugar components. Chronic N enrichment improved the soil biochemical properties and aboveground plant biomass, which stimulated microbial residues and amino sugar accumulation over time.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Sandra E. Branham ◽  
Amnon Levi ◽  
W. Patrick Wechter

Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.


Sign in / Sign up

Export Citation Format

Share Document