scholarly journals The Neural Economics of Brain Aging

Author(s):  
Jacob Kosyakovsky

Abstract Human brain aging is a true spectrum across the population, ranging from minimal changes on the microscopic level to full-blown neurodegenerative disease with accumulation of pathology, neuronal loss, dysfunctional large-scale brain networks, and progressive functional decline. Although much is known about the individual mechanisms involved in brain aging, a convincing framework that ties these highly related processes together is lacking. Herein, using mathematical modeling, I sought to understand decline with brain aging by capturing the essential macro-level processes that shape how a brain changes over the lifetime. I develop ABC (Aging Brain Capital), a simple linear simultaneous-equation model that unites aspects of neuroscience, economics, and thermodynamics to explain the evolution of brain pathology and human brain capital, the infrastructure and processes that underlie brain function, over the lifespan. The results of this model suggest that aging-associated decline in brain function is inevitable, driven by the finite nature of the brain’s pathology-clearance capacity. Furthermore, age-related neurodegenerative diseases can be understood as part of this aging process, explaining the spectrum of pathology and neurodegeneration across the population. I demonstrate that several essential aspects of the pathogenesis of Alzheimer disease (AD) can be likewise explained in this framework incorporating amyloid-tau interaction, the emerging concept that amyloid pathology accelerates tau pathology. The conception of Alzheimer pathogenesis that I present not only explains and unifies the basis for familial AD, primary-age-related tauopathy (PART), and late-onset AD (LOAD), but also reconciles amyloid-centered, tau-centered, and synergistic models of AD. Finally, I describe the possible implications of these results for future therapeutic development across neurodegenerative disease.

2021 ◽  
Vol 14 ◽  
Author(s):  
Jorge Carrera ◽  
Jensen Tomberlin ◽  
John Kurtz ◽  
Eda Karakaya ◽  
Mehmet Bostanciklioglu ◽  
...  

The aging brain seems to be characterized by neuronal loss leading to cognitive decline and progressively worsening symptoms related to neurodegeneration. Also, pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive activation of microglia and their pro-inflammatory by-products, which is seen as individuals increase in age. Consequently, microglial activity is tightly regulated by neuron-microglia communications. The endocannabinoid system (ECS) is emerging as a regulator of microglia and the neuronal-microglia communication system. Recently, it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic interneurons plays a crucial role in regulating microglial activity. Interestingly, if endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic central nervous system insult models by activating microglia and leading to accelerated brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions yields the potential to understand the communication system and mechanism by which the ECS regulates glial cells and aspects of aging. While there remains much to discover with the ECS, the information gathered and identified already could lead to the development of cell-specific therapeutic interventions that help in reducing the effects of age-related pro-inflammatory states and neurodegeneration.


2020 ◽  
Author(s):  
René Westerhausen ◽  
Anders M. Fjell ◽  
Kristiina Kompus ◽  
Steven J. Schapiro ◽  
Chet Sherwood ◽  
...  

AbstractThe human corpus callosum exhibits substantial atrophy in old age, which is stronger than what would be predicted from parallel changes in overall brain anatomy. To date, however, it has not been conclusively established whether this accentuated decline represents a common feature of brain aging across species, or whether it is a specific characteristic of the aging human brain. In the present cross-sectional study, we address this question by comparing age-related difference in corpus callosum morphology of chimpanzees and humans. For this purpose, we measured total midsagittal area and regional thickness of the corpus callosum from T1-weighted MRI data from 213 chimpanzees, aged between 9 and 54 years. The results were compared with data drawn from a large-scale human samples which was age-range matched using two strategies: (a) matching by chronological age (human sample size: n = 562), or (b) matching by accounting for differences in longevity and various maturational events between the species (i.e., adjusted human age range: 13.6 to 80.9 years; n = 664). Using generalized additive modelling to fit and compare aging trajectories, we found significant differences between the two species. The chimpanzee aging trajectory compared to the human trajectory was characterized by a slower increase from adolescence to middle adulthood, and by a lack of substantial decline from middle to old adulthood, which, however, was present in humans. Thus, the accentuated decline of the corpus callosum found in aging humans, is not an universal characteristic of the aging brain, and appears to be human-specific.


2012 ◽  
Vol 15 (3) ◽  
pp. 442-452 ◽  
Author(s):  
Thomas Espeseth ◽  
Andrea Christoforou ◽  
Astri J. Lundervold ◽  
Vidar M. Steen ◽  
Stephanie Le Hellard ◽  
...  

Data collection for the Norwegian Cognitive NeuroGenetics sample (NCNG) was initiated in 2003 with a research grant (to Ivar Reinvang) to study cognitive aging, brain function, and genetic risk factors. The original focus was on the effects of aging (from middle age and up) and candidate genes (e.g., APOE, CHRNA4) in cross-sectional and longitudinal designs, with the cognitive and MRI-based data primarily being used for this purpose. However, as the main topic of the project broadened from cognitive aging to imaging and cognitive genetics more generally, the sample size, age range of the participants, and scope of available phenotypes and genotypes, have developed beyond the initial project. In 2009, a genome-wide association (GWA) study was undertaken, and the NCNG proper was established to study the genetics of cognitive and brain function more comprehensively. The NCNG is now controlled by the NCNG Study Group, which consists of the present authors. Prominent features of the NCNG are the adult life-span coverage of healthy participants with high-dimensional imaging, and cognitive data from a genetically homogenous sample. Another unique property is the large-scale (sample size 300–700) use of experimental cognitive tasks focusing on attention and working memory. The NCNG data is now used in numerous ongoing GWA-based studies and has contributed to several international consortia on imaging and cognitive genetics. The objective of the following presentation is to give other researchers the information necessary to evaluate possible contributions from the NCNG to various multi-sample data analyses.


2021 ◽  
Author(s):  
Abigail Dickinson ◽  
Shafali Jeste ◽  
Elizabeth Milne

AbstractEmerging evidence suggests that aging processes may be altered in adults with autism spectrum disorder (ASD). However, it remains unclear if oscillatory slowing, a key neurophysiological change in the aging brain, manifests atypically in this population. This study sought to examine patterns of age-related oscillatory slowing in adults with ASD, captured by reductions in the brain’s peak alpha frequency. Resting-state EEG data from adults (18-70 years) with ASD (N=93) and age-matched neurotypical (NT) controls (N=87) were pooled from three independent datasets. A robust curve-fitting procedure quantified the peak frequency of alpha oscillations (7-13Hz) across all brain regions. Associations between peak alpha frequency and age were assessed and compared between groups. Consistent with characteristic patterns of oscillatory slowing, peak alpha frequency was negatively associated with age across the entire sample (p<.0001). A significant group by age interaction revealed that this relationship was more pronounced in adults with ASD (p<.01), suggesting that that age-related oscillatory slowing may be accelerated in this population. Scalable EEG measures such as peak alpha frequency could provide insights into neural aging that are crucially needed to inform care plans and preventive interventions that can promote successful aging in ASD.


Author(s):  
Jessica R. Andrews-Hanna ◽  
Matthew D. Grilli ◽  
Muireann Irish

The brain’s default network (DN) has received considerable interest in the context of so-called “normal” and pathological aging. Findings have generally been couched in support of a pessimistic view of brain aging, marked by substantial loss of structural brain integrity accompanied by a host of impairments in brain and cognitive function. A critical look at the literature, however, reveals that the standard loss of integrity, loss of function (LILF) view in normal aging may not necessarily hold with respect to the DN and the internally guided functions it supports. Many internally guided processes subserved by the DN are preserved or enhanced in cognitively healthy older adults. Moreover, differences in motivational, contextual, and physiological factors between young and older adults likely influence the extant neuroimaging and cognitive findings. Accordingly, normal aging can be viewed as a series of possibly adaptive cognitive and DN-related alterations that bolster cognitive function and promote socioemotional well-being and stability in a stage of life noted for change. On the other hand, the available evidence reveals strong support for the LILF view of the DN in neurodegenerative disorders, whereby syndromes such as Alzheimer’s disease (AD) and semantic dementia (SD), characterized by progressive atrophy to distinct DN subsystems, display distinct aberrations in autobiographical and semantic cognition. Taken together, these findings call for more naturalistic, age-appropriate, and longitudinal paradigms when investigating neurocognitive changes in aging and to adequately assess and control for differences in non-neural factors that may obscure “true” effects of normal and pathological aging. A shift in the framework with which age-related alterations in internally guided cognition are interpreted may shed important light on the neurocognitive mechanisms differentiating healthy and pathological aging, leading to a more complete picture of the aging brain in all its complexity.


2019 ◽  
Vol 28 (R2) ◽  
pp. R197-R206 ◽  
Author(s):  
Michael A Lodato ◽  
Christopher A Walsh

AbstractAging is a mysterious process, not only controlled genetically but also subject to random damage that can accumulate over time. While DNA damage and subsequent mutation in somatic cells were first proposed as drivers of aging more than 60 years ago, whether and to what degree these processes shape the neuronal genome in the human brain could not be tested until recent technological breakthroughs related to single-cell whole-genome sequencing. Indeed, somatic single-nucleotide variants (SNVs) increase with age in the human brain, in a somewhat stochastic process that may nonetheless be controlled by underlying genetic programs. Evidence from the literature suggests that in addition to demonstrated increases in somatic SNVs during aging in normal brains, somatic mutation may also play a role in late-onset, sporadic neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. In this review, we will discuss somatic mutation in the human brain, mechanisms by which somatic mutations occur and can be controlled, and how this process can impact human health.


2014 ◽  
Vol 73 (7) ◽  
pp. 640-657 ◽  
Author(s):  
Mariona Jové ◽  
Manuel Portero-Otín ◽  
Alba Naudí ◽  
Isidre Ferrer ◽  
Reinald Pamplona

2001 ◽  
Vol 3 (3) ◽  
pp. 167-180

Remarkable and continued growth in the field of brain aging research has been fueled by a confluence of factors. Developments in molecular biology, imaging, and genetics coupled with the imperative caused by the aging of the population has created fertile ground for improved understanding of the interaction between brain function and behavior. Aging changes in neurochemical systems may account for the spectrum of cognitive and behavioral states of successfully aged pen sons, but may also contribute to enhanced vulnerability to depressive or dementing illness. In particular, the refinement of in vivo imaging approaches to investigating the structure and function of the aging brain has provided the opportunity to strengthen our knowledge of the biological substrate of the aging brain and neuropsychiatrie disorders, and translate these into therapeutics.


2021 ◽  
Vol 22 (19) ◽  
pp. 10251
Author(s):  
Vladimir Sukhorukov ◽  
Dmitry Voronkov ◽  
Tatiana Baranich ◽  
Natalia Mudzhiri ◽  
Alina Magnaeva ◽  
...  

Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.


2019 ◽  
Author(s):  
Gustavo Deco ◽  
Morten L. Kringelbach

SummaryTurbulence facilitates fast energy/information transfer across scales in physical systems. These qualities are important for brain function, but it is currently unknown if the dynamic intrinsic backbone of brain also exhibits turbulence. Using large-scale neuroimaging empirical data from 1003 healthy participants, we demonstrate Kuramoto’s amplitude turbulence in human brain dynamics. Furthermore, we build a whole-brain model with coupled oscillators to demonstrate that the best fit to the data corresponds to a region of maximally developed amplitude turbulence, which also corresponds to maximal sensitivity to the processing of external stimulations (information capability). The model shows the economy of anatomy by following the Exponential Distance Rule of anatomical connections as a cost-of-wiring principle. This establishes a firm link between turbulence and optimal brain function. Overall, our results reveal a way of analysing and modelling whole-brain dynamics that suggests turbulence as the dynamic intrinsic backbone facilitating large scale network communication.


Sign in / Sign up

Export Citation Format

Share Document