scholarly journals Impaired Mitophagy in Neurons and Glial Cells during Aging and Age-Related Disorders

2021 ◽  
Vol 22 (19) ◽  
pp. 10251
Author(s):  
Vladimir Sukhorukov ◽  
Dmitry Voronkov ◽  
Tatiana Baranich ◽  
Natalia Mudzhiri ◽  
Alina Magnaeva ◽  
...  

Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.

2001 ◽  
Vol 56 (11-12) ◽  
pp. 921-929 ◽  
Author(s):  
Kleopatra Schulpis ◽  
Artemis Doulgeraki ◽  
Stylianos Tsakiris

Abstract The process of brain aging is an interaction of age-related losses and compensatory mechanisms. This review is focused on the changes of the synaptic number and structure, their functional implications, regarding neurotransmission, as well as the electrical activity of neuronal circuits. Moreover, the importance of calcium homeostasis is strongly emphasized. It is also suggested that many neuronal properties are preserved, as a result of adaptive mechanisms, and that a series of interdependent factors regulate brain aging. The "new fron­ tier" in research is the challenge of understanding the effects of aging, both to prevent degen­ erative diseases and reduce their consequences. New aspects are considered a) the role of nitric oxide, b) free radicals and apoptosis, c) impaired cerebral microcirculation, d) m eta­ bolic features of aging brain, e) the possible neuroprotective role of insulin-like growth factor-1 (IGF-1) and ovarian steroids and e) stress and aging. These numerous multifactorial approaches are essential to understand the process of aging. The more we learn about it, the more we realize how to achieve "successful" aging. M inireview


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sára Sándor ◽  
Kitti Tátrai ◽  
Kálmán Czeibert ◽  
Balázs Egyed ◽  
Enikő Kubinyi

Describing evolutionary conserved physiological or molecular patterns, which can reliably mark the age of both model organisms and humans or predict the onset of age-related pathologies has become a priority in aging research. The age-related gene-expression changes of the Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) gene have been well-documented in humans and rodents. However, data is lacking from other relevant species, including dogs. Therefore, we quantified the CDKN2A mRNA abundance in dogs of different ages, in four tissue types: the frontal cortex of the brain, temporal muscle, skin, and blood. We found a significant, positive correlation between CDKN2A relative expression values and age in the brain, muscle, and blood; however, no correlation was detected in the skin. The strongest correlation was detected in the brain tissue (CDKN2A/GAPDH: r = 0.757, p < 0.001), similarly to human findings, while the muscle and blood showed weaker, but significant correlation. Our results suggest that CDKN2A might be a potential blood-borne biomarker of aging in dogs, although the validation and optimization will require further, more focused research. Our current results also clearly demonstrate that the role of CDKN2A in aging is conserved in dogs, regarding both tissue specificity and a pivotal role of CDKN2A in brain aging.


2018 ◽  
Author(s):  
R. Nathan Spreng ◽  
Gary R. Turner

In this opening section of the Aging Brain we set the stage for the contributions that follow by providing a broad overview of the latest advances in our understanding of how the brain changes, both structurally and functionally, across the adult lifespan. We leave domain-specific aspects of brain aging to the subsequent chapters, where contributors will provide more targeted accounts of brain change germane to their particular focus on the aging brain. Here we review the extant, and rapidly expanding literature to provide a brief overview and introduction to structural and functional change that occur with typical brain aging. We begin the chapter by looking back, to review some of the early discoveries about how the brain changes across the adult lifespan. We close the chapter by looking forward, towards new discoveries that challenge our core assumptions about the inevitability or irreversibility of age-related brain changes. These sections serve as bookends for the core of the chapter where we review the latest research advances that continue to uncover the mysteries of the aging brain. Spreng, R.N., Turner, G.R. (2019, forthcoming) Structure and function of the aging brain. In G Samanez-Larkin (Ed.) The aging brain. Washington DC: American Psychological Association.


2021 ◽  
Author(s):  
Julie Faitg ◽  
Clay Lacefield ◽  
Tracey Davey ◽  
Kathryn White ◽  
Ross Laws ◽  
...  

The brain′s ability to process complex informations relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments – the soma, dendrites, and projecting axons – which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. Here we apply a quantitative three-dimensional electron microscopy approach to map mitochondrial network morphology and complexity in the mouse brain. We examine three neuronal sub–compartments – the soma, dendrites, myelinated axons – in the dentate gyrus and CA1 of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho–function in the aging brain.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jorge Carrera ◽  
Jensen Tomberlin ◽  
John Kurtz ◽  
Eda Karakaya ◽  
Mehmet Bostanciklioglu ◽  
...  

The aging brain seems to be characterized by neuronal loss leading to cognitive decline and progressively worsening symptoms related to neurodegeneration. Also, pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive activation of microglia and their pro-inflammatory by-products, which is seen as individuals increase in age. Consequently, microglial activity is tightly regulated by neuron-microglia communications. The endocannabinoid system (ECS) is emerging as a regulator of microglia and the neuronal-microglia communication system. Recently, it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic interneurons plays a crucial role in regulating microglial activity. Interestingly, if endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic central nervous system insult models by activating microglia and leading to accelerated brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions yields the potential to understand the communication system and mechanism by which the ECS regulates glial cells and aspects of aging. While there remains much to discover with the ECS, the information gathered and identified already could lead to the development of cell-specific therapeutic interventions that help in reducing the effects of age-related pro-inflammatory states and neurodegeneration.


2013 ◽  
Vol 15 (1) ◽  
pp. 45-52 ◽  

Aging is a physiological process that can develop without the appearance of concurrent diseases. However, very frequently, older people suffer from memory loss and an accelerated cognitive decline. Studies of the neurobiology of aging are beginning to decipher the mechanisms underlying not only the physiology of aging of the brain but also the mechanisms that make people more vulnerable to cognitive dysfunction and neurodegenerative diseases. Today we know that the aging brain retains a considerable functional plasticity, and that this plasticity is positively promoted by genes activated by different lifestyle factors. In this article some of these lifestyle factors and their mechanisms of action are reviewed, including environmental enrichment and the importance of food intake and some nutrients. Aerobic physical exercise and reduction of chronic stress are also briefly reviewed. It is proposed that lifestyle factors are powerful instruments to promote healthy and successful aging of the brain and delay the appearance of age-related cognitive deficits in elderly people.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ewa Sikora ◽  
Anna Bielak-Zmijewska ◽  
Magdalena Dudkowska ◽  
Adam Krzystyniak ◽  
Grazyna Mosieniak ◽  
...  

Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.


Author(s):  
Sascha R. A. Alles ◽  
Anne-Marie Malfait ◽  
Richard J. Miller

Pain is not a simple phenomenon and, beyond its conscious perception, involves circuitry that allows the brain to provide an affective context for nociception, which can influence mood and memory. In the past decade, neurobiological techniques have been developed that allow investigators to elucidate the importance of particular groups of neurons in different aspects of the pain response, something that may have important translational implications for the development of novel therapies. Chemo- and optogenetics represent two of the most important technical advances of recent times for gaining understanding of physiological circuitry underlying complex behaviors. The use of these techniques for teasing out the role of neurons and glia in nociceptive pathways is a rapidly growing area of research. The major findings of studies focused on understanding circuitry involved in different aspects of nociception and pain are highlighted in this article. In addition, attention is drawn to the possibility of modification of chemo- and optogenetic techniques for use as potential therapies for treatment of chronic pain disorders in human patients.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1256
Author(s):  
Ivan Y. Iourov ◽  
Yuri B. Yurov ◽  
Svetlana G. Vorsanova ◽  
Sergei I. Kutsev

Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.


Sign in / Sign up

Export Citation Format

Share Document