scholarly journals Development of Molecular Rapid Detection for Vibrio cholerae and Escherichia coli

2020 ◽  
Author(s):  
Diana Elizabeth Waturangi ◽  
JASON PETRUS ◽  
RICO KOSASIH ◽  
GLORIA RAISSA

Abstract Background: Vibrio cholerae and Escherichia coli were main causative agent foodborne diseases, especially in many developing countries, such as Indonesia. Thereby, rapid detection of these pathogenic bacteria is necessary to quickly detect infection that occurred so it can be treated immediately. In this case, multiplex PCR allows multiple genes amplification in one reaction thereby enable to perform rapid detection of these pathogenic bacteria. The objective of this study is to develop rapid molecular detection of V. Cholerae and E. coli and analyze the sensitivity and specificity of this assay.Result: In this study, we used various virulence genes in each pathogenic bacteria as marker to develop rapid molecular detection. Based on this research, optimum results of V. cholerae and E. coli rapid detection were obtained with a primer concentration of 16 µM for ctxA and ompU, 30 µM for ace, and 50 µM for zot, and toxR; 2 µM for elt and 5 µM for stx, respectively. Finally, based on the method standardization by ISO/TS 20836 these assays had 0% false positive, 0% false negative, 100% specificity, and 100% sensitivity; 0% false positive, 4% false negative, 100% specificity, and 96% sensitivity for V. cholerae and E. coli respectively. Conclusion: The optimized method was qualified to be used as a detection method for V. cholerae and E. coli detection according to ISO/TS 20836 (2017) and EHEC and ETEC contamination in drinking water samples.

2021 ◽  
pp. e299
Author(s):  
Diana Elizabeth Waturangi ◽  
Jason Petrus ◽  
Rico Kosasih ◽  
Felicia Roseline

Vibrio cholerae and pathogenic Escherichia coli were considered as main causative agent foodborne diseases especially in many developing countries, such as Indonesia. Thereby, rapid detection of these pathogenic bacteria is necessary to treat food-borne related diseases causing by these bacteria. In this case, multiplex PCR allows multiple genes amplification in one reaction thereby enable to perform rapid detection of these pathogenic bacteria. The objective of this study is to optimize uniplex and multiples PCR of V. cholerae and pathogenic E. coli detection and determine the sensitivity and specificity of this assays. We used various virulence genes for each pathogenic bacterium as markers for uniplex and multiplex PCR detection. Based on this research, the optimum results of V. cholerae and pathogenic E. coli were obtained with a primer concentration of 16 µM for ctxA and ompU, 30 µM for ace, and 50 µM for zot, and toxR; 2 µM for elt and 5 µM for stx, respectively. Finally, based on the standardization method by ISO/TS 20836 these assays had 0% false positive, 0% false negative, 100% specificity, and 100% sensitivity; 0% false positive, 4% false negative, 100% specificity, and 96% sensitivity for V. cholerae and pathogenic E. coli respectively. The optimized method was qualified to be used as a molecular detection for V. cholerae as well as EHEC and ETEC detection according to ISO/TS 20836 (2017)  from drinking water samples.


Author(s):  
Semiha Yalçın ◽  
Ayla Ünver Alçay ◽  
Gözde Yüzbaşıoğlu ◽  
Burcu Çakmak ◽  
Aysun Sağlam

The purpose of this study were to identify the presence of E.coli O157 and to determine its prevalence in foods which were collected from various restaurants, shops and markets in Istanbul. Also, validation of detection method of E. coli O157 in all food stuffs was carried out according to applicability, repeatability, and minimum detection limit (LOD) and false positive and negative analysis based on TS EN ISO 16654 standard method. The results showed that the prevalence of E. coli O157 in food was 2%, and its prevalence increased in April and May.


2006 ◽  
Vol 4 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Maggy N. B. Momba ◽  
Veronica K. Malakate ◽  
Jacques Theron

In order to study the prevalence of enteric pathogens capable of causing infection and disease in the rural communities of Nkonkobe, bacterial isolates were collected from several surface water and groundwater sources used by the community for their daily water needs. By making use of selective culture media and the 20E API kit, presumptive Escherichia coli, Salmonella spp. and Vibrio cholerae isolates were obtained and then analysed by polymerase chain reaction assays (PCR). The PCR successfully amplified from water samples a fragment of E. coli uidA gene that codes for β-D-glucuronidase which is a highly specific characteristic of enteropathogenic E. coli, enterotoxigenic E. coli and entero-invasive E. coli. The PCR also amplified the epsM gene from water samples containing toxigenic V. cholerae. Although E. coli was mostly detected in groundwater sources, toxigenic V. cholerae was detected in both surface and groundwater sources. There was a possibility of Salmonella typhimurium in Ngqele and Dyamala borehole water samples. The presence of these pathogenic bacteria in the above drinking water sources may pose a serious health risk to consumers.


2005 ◽  
Vol 68 (8) ◽  
pp. 1566-1574 ◽  
Author(s):  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
XIANGWU NOU ◽  
MOHAMMAD KOOHMARAIE

Currently, several beef processors employ test-and-hold systems for increased quality control of ground beef. In such programs, each lot of product must be tested and found negative for Escherichia coli O157:H7 prior to release of the product into commerce. Optimization of three testing attributes (detection time, specificity, and sensitivity) is critical to the success of such strategies. Because ground beef is a highly perishable product, the testing methodology used must be as rapid as possible. The test also must have a low false-positive result rate so product is not needlessly discarded. False-negative results cannot be tolerated because they would allow contaminated product to be released and potentially cause disease. In this study, two culture-based and three PCR-based methods for detecting E. coli O157:H7 in ground beef were compared for their abilities to meet the above criteria. Ground beef samples were individually spiked with five genetically distinct strains of E. coli O157: H7 at concentrations of 17 and 1.7 CFU/65 g and then subjected to the various testing methodologies. There was no difference (P > 0.05) in the abilities of the PCR-based methods to detect E. coli O157:H7 inoculated in ground beef at 1.7 CFU/65 g. The culture-based systems detected more positive samples than did the PCR-based systems, but the detection times (21 to 48 h) were at least 9 h longer than those for the PCR-based methods (7.5 to 12 h). Ground beef samples were also spiked with potentially cross-reactive strains. The PCR-based systems that employed an immunomagnetic separation step prior to detection produced fewer false-positive results.


1994 ◽  
Vol 30 (8) ◽  
pp. 295-302 ◽  
Author(s):  
N. Mezrioui ◽  
B. Oudra ◽  
K. Oufdou ◽  
L. Hassani ◽  
M. Loudiki ◽  
...  

The stabilization pond is one of the more important biological wastewater treatment systems, applied in many countries. An experiment treating wastewater by stabilization ponds under the arid climate of Marrakesh (Morocco) has been underway since 1985. The experimental installation, made from two lined stabilization ponds, received domestic sewage which carried not only the organic load but also a significant bacterial load and other microorganisms. In this new habitat, the cells' bacterial behaviour was affected by various physico-chemical and biological factors. It appears that in such treatment system, known for excessive algal production, the microalgae has evidently an influence on bacterial growth. In this paper, we proposed to appreciate how microalgae essentially: Chlorella (Chlorophyta), Synechococcus andSynechocystis (Cyanobacteria), can affect the behaviour, survival and temporal evolution of Escherichia coli and Vibrio cholerae. In wastewater stabilization ponds of Marrakesh high levels of V. cholerae and low concentrations of coliform bacteria were noted during summer periods. This period coincided with a bloom of picocyanobacteria associated with a weak relative abundance of Chlorella. Some interactions tests were carried out with these bacteria and these algae, using a treated wastewater batch culture. Results show that the green algae reduces V. cholerae (pathogenic bacteria) abundances more than E. coli (fecal contamination bacteria) where as better survival of this pathogenic bacteria was noted in presence of Cyanobacteria. The die-off of E. coli appears to be more reduced in presence of Cyanobacteria than Chlorella. Furthermore, the alkaline pH seems to present a more bactericidal effect on E. coli than on V. cholerae. Thus, the Cyanobacteria blooms, associated with a weak percentage of Chlorella abundance, occurring periodically during summer in sewage stabilization ponds of Marrakesh, will be considered as one of the major factors leading to high levels of V. cholerae and low abundances of fecal coliform bacteria during the hot period.


1980 ◽  
Vol 85 (1) ◽  
pp. 51-57 ◽  
Author(s):  

SummaryIn a multi-laboratory trial, lauryl tryptose mannitol broth (LTMB) and minerals-modified glutamate medium with added tryptophan (MMGM + T) were compared as single tube tests for the confirmation ofEscherichia coliin water; the confirmed results were also compared with the production of gas from minerals-modified glutamate medium without added tryptophan (MMGM). LTMB and MMGM + T gave similar gas and indole results with about 90% of the water samples in most of the laboratories. When compared with the ‘correct’ results as judged by acid and gas production from lactose peptone water and indole from tryptone water, the difference in the rate of false positive reactions between LTMB and MMGM + T was insignificant; but LTMB gave a significantly lower rate of false negative reactions than MMGM + T. Gas production from MMGM without added tryptophan gave significantly higher rates of both false positive and false negative reactions. Lauryl sulphate is therefore a suitable inhibitory surfactant for use in single tubemedia for the confirmation ofE. coli, which can be recommended.


Author(s):  
K. A. Nikiforov ◽  
L. V. Anisimova ◽  
G. N. Odinokov ◽  
A. V. Fadeeva ◽  
L. A. Novichkova ◽  
...  

A set of primers for detection of genes encoding resistance to streptomycin ( strA, strB ), tetracyclin ( tetA, tetR ), chloramphenicol ( catА ), kanamycin ( npt , aphA ), vankomycin ( sanA ), polymyxin ( pmrD ) has been developed with the aim of rapid and effective detection of drug-resistant strains of dangerous bacterial infections agents. Efficacy of constructed primers has been confirmed against a panel of 40 Yersinia pestis, 49 Vibrio cholerae, and 2 Escherichia coli strains from the State collection of pathogenic bacteria of the RAPI “Microbe”. Drug-resistance genes ntp and catA have been detected in plague agent strains , strA, strB , npt , aphA , tetA and tetR - in cholera agent; strA , tetR , ntp and aphA - in pathogenic strain E. coli О157:H7. Determined is universal character of the designed primers for drug-resistance genes detection in these pathogenic bacteria species.


1997 ◽  
Vol 60 (3) ◽  
pp. 219-225 ◽  
Author(s):  
RUTH FIRSTENBERG-EDEN ◽  
NADINE M. SULLIVAN

The EZ Coli™ Rapid Detection System consists of a selective enrichment medium and a rapid immunological detection kit. After being incubated for 15 to 24 h at 40 to 42°C, an Escherichia coli O157 culture was at a sufficient cell concentration (> 106 CFU/ml) to be tested with the EZ Coli Detection Kit. In studies of foods seeded with E. coli O157, all 42 strains of E. coli O157 tested positive with the detection kit. None of the 29 strains of E. coli non-O157 tested positive with the kit. Species of Citrobacter, Hafnia, and Klebsiella grew in the medium but tested negative. Of the 47 strains of non-E. coli O157 tested, only two strains of Salmonella 0 Group N grew and tested positive with the kit. Several laboratories evaluated the EZ Coli System with 378 clean and naturally contaminated food samples (mainly raw beef), and 337 different food samples, including raw meats (beef, pork, turkey, and chicken), dairy products, spices, vegetables, and apple cider, spiked with 50 different strains of E. coli O157 (1 to 100 CFU/25 g). Of these samples, 44.6% were positive and 52.2% were negative. The false-positive rate was 1.7% and the false-negative rate was 1.5%. The data show that high levels of coliforms (> 106 CFU/g) in food samples may impede the detection of low levels (1 to 10 CFU/25 g) of E. coli O157 organisms in broth, thereby causing false-negative reactions with most detection systems. The EZ Coli Rapid Detection System provides a rapid and specific means of detecting E. coli O157 in raw and processed foods.


1998 ◽  
Vol 180 (23) ◽  
pp. 6415-6418 ◽  
Author(s):  
Finbarr Hayes

ABSTRACT A novel segregational stability system was identified on plasmid R485, which originates from Morganella morganii. The system is composed of two overlapping genes, stbD andstbE, which potentially encode proteins of 83 and 93 amino acids, respectively. Homologs of the stbDE genes were identified on the enterotoxigenic plasmid P307 from Escherichia coli and on the chromosomes of Vibrio cholerae andHaemophilus influenzae biogroup aegyptius. The former two homologs also promote plasmid stability in E. coli. Furthermore, the stbDE genes share homology with components of the relBEF operon and with thednaT gene of E. coli. The organization of thestbDE cassette is reminiscent of toxin-antitoxin stability cassettes.


Author(s):  
Cheng Liu ◽  
Shuiqin Fang ◽  
Yachen Tian ◽  
Youxue Wu ◽  
Meijiao Wu ◽  
...  

Escherichia coli O157:H7 ( E. coli O157:H7) is a dangerous foodborne pathogen, mainly found in beef, milk, fruits, and their products, causing harm to human health or even death. Therefore, the detection of E. coli O157:H7 in food is particularly important. In this paper, we report a lateral flow immunoassay strip (LFIS) based on aggregation-induced emission (AIE) material labeling antigen as a fluorescent probe for the rapid detection of E. coli O157:H7. The detection sensitivity of the strip is 105 CFU/mL, which is 10 times higher than that of the colloidal gold test strip. This method has good specificity and stability and can be used to detect about 250 CFU of E. coli O157:H7 successfully in 25 g or 25 mL of beef, jelly, and milk. AIE-LFIS might be valuable in monitoring food pathogens for rapid detection.


Sign in / Sign up

Export Citation Format

Share Document