scholarly journals Abundance of pathogenic Escherichia coli, Salmonella typhimurium and Vibrio cholerae in Nkonkobe drinking water sources

2006 ◽  
Vol 4 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Maggy N. B. Momba ◽  
Veronica K. Malakate ◽  
Jacques Theron

In order to study the prevalence of enteric pathogens capable of causing infection and disease in the rural communities of Nkonkobe, bacterial isolates were collected from several surface water and groundwater sources used by the community for their daily water needs. By making use of selective culture media and the 20E API kit, presumptive Escherichia coli, Salmonella spp. and Vibrio cholerae isolates were obtained and then analysed by polymerase chain reaction assays (PCR). The PCR successfully amplified from water samples a fragment of E. coli uidA gene that codes for β-D-glucuronidase which is a highly specific characteristic of enteropathogenic E. coli, enterotoxigenic E. coli and entero-invasive E. coli. The PCR also amplified the epsM gene from water samples containing toxigenic V. cholerae. Although E. coli was mostly detected in groundwater sources, toxigenic V. cholerae was detected in both surface and groundwater sources. There was a possibility of Salmonella typhimurium in Ngqele and Dyamala borehole water samples. The presence of these pathogenic bacteria in the above drinking water sources may pose a serious health risk to consumers.

Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 86 ◽  
Author(s):  
Samer Swedan ◽  
Heba Abu Alrub

The study investigated the prevalence of potentially pathogenic and drug resistant Escherichia coli among drinking water sources in Jordan. A total of 109 confirmed E. coli isolates were analyzed. Antimicrobial susceptibility testing was done using the Kirby Bauer disk diffusion method. Phenotypic identification of extended spectrum beta-lactamase (ESBL) and carbapenemase production was done using the double disk synergy test and the modified Hodge test, respectively. Isolates’ plasmid profiles were determined by gel electrophoresis. PCR was used for detection of virulence and resistance genes. Overall, 22.0% of the isolates were potentially intestinal pathogenic E. coli (IPEC); namely enteroaggregative E. coli (16.5%), enteropathogenic E. coli (2.8%), enteroinvasive E. coli (1.8%), and enterohemorrhagic E. coli (0.9%). A third of the isolates were multi-drug resistant. The highest rates of antimicrobials resistance were observed against ampicillin (93.6%) and sulfamethoxazole/trimethoprim (41.3%). All isolates were susceptible to imipenem, meropenem, doripenem and tigecycline. The prevalence of ESBL and carbapenemase producers was 54.1% and 2.8%, respectively. BlaVIM was the most prevalent resistance gene (68.8%), followed by blaCTX (50.5%), blaTEM (45.9%), blaNDM (11%), blaKPC (4.6%), and blaSHV (0.9%). Fifty-eight (53.2%) isolates contained one or more plasmid ranging from 1.0 to 8.0 kbp. Overall, high prevalence of potentially pathogenic and resistant isolates was observed.


Author(s):  
Udoh I.P., Iloghalu ◽  
Iloghalu, Ijenwa Amarachi ◽  
Aladenika S.T.

Infectious diseases control of recent is a major health concern globally due to high increase in number of microorganisms that are resistant to conventional antimicrobial agents. This study aimed at ascertaining the microbiological quality and multiple antibiotic resistance profile of E. coli strains isolated from different sources of drinking water. A total of 136 water samples from different drinking water sources, including the storage tanks (the school and the commercial storage tank), sachet and bottle water were obtained from University of Nigeria Enugu Campus and analyzed. Standard microbiological techniques were employed for bacteria isolation, identification and antibiogram. From the water samples collected 25 E. coli strains were isolated. The school storage tanks account for 60% of the isolates, while bottled water showed no growth. 92% of the E. coli isolated showed resistance to the tested antibiotics. Resistant were higher with Augmentin (64%), Chloramphenicol (48%) and Streptomycin 11 (44%) while most were sensitive to Tarivid and Perfloxacine (100%). Isolates from school storage water sources showed the highest resistance to Augmentin (76.5%) while those from commercial storage water sources showed the highest resistance to Streptomycin (66.7%). Out of the 23 (92%) antibiotics resistant E. coli isolates 18 (78.3%) were multidrug resistance (MDR). The school storage water sources had the highest number of MDR E. coli 14 (77.8%) followed by the commercial storage water sources 4 (22.2%), but the sachet and bottled water had no MDR E. coli. In conclusion, drinking water may potentially contribute to the source of multidrug resistance E. coli in this community


2017 ◽  
Vol 83 (23) ◽  
Author(s):  
J. L. Murphy ◽  
A. M. Kahler ◽  
I. Nansubuga ◽  
E. M. Nanyunja ◽  
B. Kaplan ◽  
...  

ABSTRACT In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli, free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli. Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli. While S. Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions.


2016 ◽  
Vol 6 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Daniel I. Gerges ◽  
William G. LaPlant ◽  
James N. Hyde ◽  
Harold Previl ◽  
Janet Forrester

Prior research in Milot, Haiti, documented that public water sources are commonly fecally contaminated, as indicated by the presence of Escherichia coli. However, the degree of contamination was not assessed. In this study, the degree of fecal contamination in public drinking water sources was determined. Further, the usefulness of sanitary inspection surveys to predict fecal contamination was evaluated. A convenience sample of public water sources was tested using a semi-quantitative assay, which estimates the most probable number (MPN) of E. coli/100 mL of water. Each source was evaluated using the World Health Organization sanitary inspection score and classified as improved or unimproved. Sixty-three water sources were tested, of which 27 (43%) had <1 MPN/100 mL, 19 (30%) were contaminated from 1 to 100 MPN/100 mL, and 17 (27%) were contaminated with >100 MPN/100 mL. Some improved water sources were contaminated with >100 MPN/100 mL. The sanitary inspection score did not distinguish between sources that were and were not contaminated with E. coli. In Milot, Haiti, public water sources can be highly contaminated with E. coli. Since neither the categorization of a water source as improved or unimproved nor the sanitary inspection score can predict contamination, routine microbiological testing is justified.


2020 ◽  
Vol 18 (6) ◽  
pp. 1091-1097
Author(s):  
Hisham N. Altayb ◽  
Eman Khalid Salih ◽  
Ehssan H. Moglad

Abstract This study aimed to detect the blaCTX-M group 1 in Escherichia coli (E. coli) isolated from drinking water in Khartoum State. Two hundred and eighty water samples were collected randomly from different areas, places, and sources from the state and examined for the presence of E. coli as a fecal contamination indicator. Isolation and identification of E. coli were performed using culture characteristics on different culture media and biochemical reactions. An antimicrobial sensitivity test was performed for all isolated E. coli using agar disk diffusion method. DNA was extracted by boiling method, and bacterial genomic DNA used as a template to detect blaCTX-M group 1 by PCR. Results showed 86 (30.7%) E. coli were isolated out of 280 water samples. Antimicrobial susceptibility testing revealed the highest resistant percentage was 59% for tetracycline, followed by 35% for gentamycin, while for chloramphenicol and cefotaxime was 22 and 20%, respectively. blaCTX-M group 1 was detected in about 40% of all isolates. This study concludes that drinking water in Khartoum State may be contaminated with feces and might be a possible source for transferring resistant bacteria. Thus, it may be one of the critical causes of increasing reports of antimicrobial resistance in Khartoum State.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


2020 ◽  
Author(s):  
Francis Hamwiinga ◽  
Chisala D. Meki ◽  
Patricia Mubita ◽  
Hikabasa Halwiindi

Abstract Background: One of the factors impeding access to safe water is water pollution. Of particular concern is heavy metal contamination of water bodies. This study was aimed at determining the levels of heavy metals in drinking water sources of Chingola District of Zambia. Methods: A cross sectional study was employed. A total of 60 water samples were collected. Thirsty (30) samples were collected in the dry season in the month of October 2016 and another 30 in the wet season in the months of February and March, 2017. For each season 10 water samples were collected from each of the three water sources. i.e. Tap water, Urban ground water sources and Rural ground water sources. Heavy metal analysis was done using Atomic Absorption Spectrophotometer (AAS).Results: This study revealed that the concentrations of Iron, Manganese, Lead, Nickel and Arsenic were beyond maximum permissible levels in various water sources. Combined averages for both dry and wet seasons were as follows: Iron: 2.3, Copper: 0.63, Cobalt: 0.02, Manganese: 0.36, Lead: 0.04, Zinc:3.2, Nickel: 0.03, Arsenic: 0.05. Chromium and Cadmium were below detection limit in all water samples. The median concentrations of iron, arsenic, copper, manganese in drinking water from the Tap, rural and urban ground water sources were different, and this difference was statistically significant (p<0.05). The median concentrations of arsenic, nickel, manganese and cobalt were different between dry and wet season, and this difference was statistically significant (p<0.05).Conclusions: Sources of heavy metals in water seems to be both natural and from human activities. The concentration of heavy metals in different water sources in this study was found to be above the recommended levels. This calls for improvement in water monitoring to protect the health of the public. Therefore, there is need for continuous monitoring of heavy metals in drinking water sources by regulatory authorities.


2019 ◽  
Author(s):  
Goyitom Gebremedhn ◽  
Abera Aregawi Berhe ◽  
Abraham Aregay Desta ◽  
Lemlem Legesse

Abstract Background Fecal contamination of drinking water sources is the main cause of diarrhea with estimated incidence of 4.6 billion episodes and 2.2 million deaths every year. Methods A total of 145 water samples of different source type were collected from different areas in Tigray region from August 2018 to January 2019. The water samples from each site were selected purposively which involved sampling of water sources with the highest number of users and functionality status during the study period. Most Probable Number (MPN) protocol was used for the bacteriological analysis of the samples. Results A total of 145 water samples were collected from six zones in Tigray region, Ethiopia from August 2018 to January 2019. The study indicated that 63(43.5%) of the water samples were detected to have fecal coliform which is E.coli. In Mekelle city, which is the capital city of Tigray region, three in five 34(60.7%) of the collected samples were confirmed to have fecal coliform. Water samples from health facilities were 9.48 times [AOR=9.48, 95%CI: (1.59, 56.18)] more likely to have fecal coliform. Water samples from wells were 10.23 times [AOR=10.23, 95%CI: (2.74, 38.26)] more likely to have fecal coliform than water samples from Tap/Pipe. Similarly, water samples from hand pumps were 22.28 times [AOR=22.28, 95%CI: (1.26, 393.7)] more likely to have fecal coliform than water samples from Tap/Pipe. Water samples reported to be not chlorinated were 3.51 times [AOR=3.51, 95%CI: (1.35, 9.13)] more likely to have fecal coliform than water samples from chlorinated sources. Conclusion In this study all water source, including the chlorinated drinking water sources, were found highly contaminated with fecal origin bacteria. This may be mainly due to constructional defects, poor sanitation inspection, poor maintenance, intermittent water supply and irregular chlorination.


2018 ◽  
Vol 19 (1) ◽  
pp. 128-136 ◽  
Author(s):  
S. Taonameso ◽  
L. S. Mudau ◽  
A. N. Traoré ◽  
N. Potgieter

Abstract Sporadic outbreaks of diarrhoea in children in the Vhembe rural areas could be an indication of contamination in drinking water sources. In areas where improved water sources are used, not all rural households experience the benefits of these improved water sources. Water samples were collected from boreholes in three wards in the Vhembe District to determine microbiological risks over a 5-month period. A Water Point Mapping tool was used to indicate the borehole distribution. Water samples were taken from each functional borehole and analysed for total coliform and Escherichia coli counts, electrical conductivity, pH and temperature. A multiplex PCR protocol was used for identification of pathogenic E. coli. A total of 125 boreholes were identified of which only 12 were functional. Seven boreholes tested positive for total coliforms and E. coli counts. Four boreholes (33.3%) tested positive for diarrhoeagenic E. coli. Fifty-eight percent (58%) of water samples were without health risks, 17% were low risk and 25% could cause infection according to the South African water quality standards. This study indicated the importance of the role of the Municipalities and the maintenance plans that need to ensure that all boreholes are functional and provide safe drinking water to the rural communities.


2013 ◽  
Vol 79 (23) ◽  
pp. 7413-7418 ◽  
Author(s):  
Eiji Haramoto ◽  
Masaaki Kitajima ◽  
Naohiro Kishida ◽  
Yoshiaki Konno ◽  
Hiroyuki Katayama ◽  
...  

ABSTRACTPepper mild mottle virus (PMMoV) is a plant virus that has been recently proposed as a potential indicator of human fecal contamination of environmental waters; however, information on its geographical occurrence in surface water is still limited. We aimed to determine the seasonal and geographic occurrence of PMMoV in drinking water sources all over Japan. Between July 2008 and February 2011, 184 source water samples were collected from 30 drinking water treatment plants (DWTPs); viruses from 1 to 2 liters of each sample were concentrated by using an electronegative membrane, followed by RNA extraction and reverse transcription. Using quantitative PCR, PMMoV was detected in 140 (76%) samples, with a concentration ranging from 2.03 × 103to 2.90 × 106copies/liter. At least one of the samples from 27 DWTPs (n= 4 or 8) was positive for PMMoV; samples from 10 of these DWTPs were always contaminated. There was a significant difference in the occurrence of PMMoV among geographical regions but not a seasonal difference. PMMoV was frequently detected in samples that were negative for human enteric virus orEscherichia coli. A phylogenetic analysis based on the partial nucleotide sequences of the PMMoV coat protein gene in 12 water samples from 9 DWTPs indicated that there are genetically diverse PMMoV strains present in drinking water sources in Japan. To our knowledge, this is the first study to demonstrate the occurrence of PMMoV in environmental waters across wide geographical regions.


Sign in / Sign up

Export Citation Format

Share Document