scholarly journals Iron-doped zinc oxide nanoparticles-triggered elicitation of important phenolic compounds in cell cultures of Fagonia indica.

Author(s):  
Atta Ullah Khan ◽  
Tariq Khan ◽  
Mubarak Ali Khan ◽  
Akhtar Nadhman ◽  
Muhammad Aasim ◽  
...  

Abstract Fagonia indica is an important medicinal plant species used traditionally against a variety of diseases. In this study, we initiated callus cultures from healthy stem explants. We observed maximum callus induction frequency (88%) on MS media supplemented with Thidiazuron (1.0 mg/mL). We also examined the callus cultures to determine the impact of iron-doped zinc oxide nanoparticles (Fe-ZnO-NPs) in concentrations (15.62 to 250 µg/mL) on biomass accumulation, secondary metabolism, and antioxidative potential in callus cultures of F. indica. Our results showed that maximum callus biomass (FW = 13.6 g and DW = 0.58 ± 0.01) was produced on day 40 when the media was supplemented with 250 µg/mL Fe-ZnO-NPs. Similarly, maximum TPC (268.36 µg GAE/g of DW) was detected in 40 days old callus added with 125 µg/mL Fe-ZnO-NPs. Maximum TFC (78.56 µg QE/g of DW) was observed in 20 days old callus grown in 62.5 µg/mL Fe-ZnO-NPs containing media. Maximum total antioxidant capacity (390.74 µg AAE/g of DW) was observed in 40 days old callus with 125 µg/mL Fe-ZnO-NPs treated cultures, respectively. The antioxidant potential was in correlation with the TPC. These results showed that Fe-ZnO-NPs elicitors can increase the biomass and activate secondary metabolism in F. indica cells.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 849 ◽  
Author(s):  
Ana Rita Pinho ◽  
Sandra Rebelo ◽  
Maria de Lourdes Pereira

Zinc oxide nanoparticles (ZnO NPs) are among nanoscale materials, attracting increasing attention owing to their exceptional set of characteristics, which makes these engineered nanoparticles a great option for improving the quality and effectiveness of diagnosis and treatment. The capacity of ZnO NPs to induce reactive oxygen species (ROS) production, DNA damage, and apoptosis represents a promise for their use in both cancer therapy and microbial treatment. However, their intrinsic toxicity together with their easy entrance and accumulation in organism have raised some concerns regarding the biomedical use of these NPs. Several studies have reported that ZnO NPs might induce cytotoxic effects on the male reproductive system, compromising male fertility. Despite some advances in this area, the knowledge of the effects of ZnO NPs on male fertility is still scarce. Overall, a brief outline of the major ZnO NPs biomedical applications and promises in terms of diagnostic and therapeutic use will also be explored. Further, this review intends to discuss the effect of ZnO NPs exposure on the male reproductive system and speculate their effects on male (in)fertility.


RSC Advances ◽  
2015 ◽  
Vol 5 (82) ◽  
pp. 67335-67342 ◽  
Author(s):  
S. T. Wang ◽  
S. P. Li ◽  
W. Q. Wang ◽  
H. You

20 and 50 mg L−1 of ZnO NPs affect transformation of NH4+–N to NO2−–N and NO2−–N to NO3−–N.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1823 ◽  
Author(s):  
Katrin Radeloff ◽  
Andreas Radeloff ◽  
Mario Ramos Tirado ◽  
Agmal Scherzad ◽  
Rudolf Hagen ◽  
...  

Zinc oxide nanoparticles (ZnO-NPs) are widely utilized, for example in manufacturing paints and in the cosmetic industry. In addition, there is raising interest in the application of NPs in stem cell research. However, cytotoxic, genotoxic and pro-inflammatory effects were shown for NPs. The aim of this study was to evaluate the impact of ZnO-NPs on cytokine secretion and differentiation properties of human adipose tissue-derived stromal cells (ASCs). Human ASCs were exposed to the subtoxic concentration of 0.2 µg/mL ZnO-NPs for 24 h. After four weeks of cultivation, adipogenic and osteogenic differentiation procedures were performed. The multi-differentiation potential was confirmed histologically and using polymerase chain reaction (PCR). In addition, the gene expression of IL-6, IL-8, vascular endothelial growth factor (VEGF) and caspase 3 was analyzed. Over the course of four weeks after ZnO-NPs exposure, no significant differences were detected in the gene expression of IL-6, IL-8, VEGF and caspase 3 compared to non-exposed cells. The differentiation was also not affected by the ZnO-NPs. These findings underline the fact, that functionality of ASCs is likely to be unaffected by ZnO-NPs, despite a long-term disposition of NPs in the cells, supposing that the starting concentration was safely in the non-toxic range. This might provide important information for single-use nanomedical applications of ZnO-NPs.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 918 ◽  
Author(s):  
Afifa Zaeem ◽  
Samantha Drouet ◽  
Sumaira Anjum ◽  
Razia Khurshid ◽  
Muhammad Younas ◽  
...  

Linum usitatissimum biosynthesizes lignans and neolignans that are diet and medicinally valuable metabolites. In recent years, zinc oxide nanoparticles (ZnONPs) have emerged as potential elicitors for the enhanced biosynthesis of commercial secondary metabolites. Herein, we investigated the influence of biogenic ZnONPs on both seedlings and stem-derived callus of L. usitatissimum. Seedlings of L. usitatissimum grown on Murashige and Skoog (MS) medium supplemented with ZnONPs (1–1000 mg/L) presented the highest antioxidant activity, total phenolic content, total flavonoid content, peroxidase and superoxide dismutase activities at 500 mg/L, while the maximum plantlet length was achieved with 10 mg/L. Likewise, the high-performance liquid chromatography (HPLC) analysis revealed the enhanced production of secoisolariciresinol diglucoside, lariciresinol diglucoside, dehydrodiconiferyl alcohol glucoside and guaiacylglycerol-β-coniferyl alcohol ether glucoside in the plantlets grown on the 500 mg/L ZnONPs. On the other hand, the stem explants were cultured on MS media comprising 1-naphthaleneacetic acid (1 mg/L) and ZnONPs (1–50 mg/L). The highest antioxidant and other activities with an enhanced rooting effect were noted in 25 mg/L ZnONP-treated callus. Similarly, the maximum metabolites were also accumulated in 25 mg/L ZnONP-treated callus. In both systems, the dose-dependent production of reactive oxygen species (ROS) was recorded, resulting in oxidative damage with a more pronounced toxic effect on in vitro cultures. Altogether, the results from this study constitute a first comprehensive view of the impact of ZnONPs on the oxidative stress and antioxidant responses in seedlings vs. in vitro cultures.


2020 ◽  
Vol 15 (11) ◽  
pp. 1412-1422
Author(s):  
Nishat Arshi ◽  
Y. Prashanthi ◽  
Tentu Nageswara Rao ◽  
Faheem Ahmed ◽  
Shalendra Kumar ◽  
...  

In this study, we report synthesis of Zinc oxide nanoparticles using simple chemical and green methods. The ZnO nanoparticles were synthesized using leaf extract of Azadirachta indica (neem) as reducing agent. The as obtained product was characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray analysis (EDAX) and TEM techniques. XRD analysis confirms that ZnO nanoparticles were crystalline having hexagonal Wurtzite structure with (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0) and (1 1 2) planes. SEM analyses show that the as synthesized ZnO NPs were in the form of agglomerates and no other impurity peak was found in the EDS. TEM analyses confirm that the size of the nanoparticle was approx. 50 nm. Here in, we investigate the effect of chemical and green synthesized zinc oxide nanoparticles on germination and growth of lycopersicum esculentus (tomato) using petri plate seed germination method in loamy sand soil. The impact of concentration of applied ZnO nanoparticles via green synthesis and chemical methods were analyzed. Results revealed that green synthesized Zinc oxide nanoparticles showed maximum growth of seedling as compared to chemically synthesized Zinc oxide nanoparticles, bulk ZnO and control. After 50 days of tomato growth analysis, it was recognized that ZnO NPs can be a good green synthetic fertilizer by increasing shoot length, wet weight, dry weight and yield over conventional control. Hence, green method is found to be more effective.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1318 ◽  
Author(s):  
Mariusz Cierech ◽  
Jacek Wojnarowicz ◽  
Adam Kolenda ◽  
Agata Krawczyk-Balska ◽  
Emilia Prochwicz ◽  
...  

The goal of the study was to investigate the level of zinc oxide nanoparticles (ZnO NPs) release from polymethyl methacrylate (PMMA)–ZnO nanocomposites (2.5%, 5%, and 7.5% w/w), as well as from the ZnO NPs layer produced on pure PMMA, and the impact of the achieved final ZnO NPs concentration on cytotoxicity, before the potential use as an alternative material for denture bases. The concentration of ZnO nanoparticles released to the aqueous solution of Zn2+ ions was assessed using optical emission spectrometry with inductively coupled plasma (ICP-OES). In the control group (pure PMMA), the released mean for ZnO was 0.074 mg/L and for individual nanocomposites at concentrations of 2.5%, 5%, and 7.5% was 2.281 mg/L, 2.143 mg/L, and 3.512 mg/L, respectively. The median for the ZnO NPs layer produced on PMMA was 4.878 mg/L. In addition, in vitro cytotoxicity of ZnO NPs against the human HeLa cell line was determined through the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. The cytotoxicity studies demonstrate that ZnO nanoparticles in the concentrations up to 20 mg/L have no adverse effect on HeLa cells. When compared with the released and cytotoxic concentrations of ZnO NPs, it can be expected that ZnO released from dental prostheses to the oral cavity environment will have no cytotoxic effect on host cells.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1081
Author(s):  
Ana Rita Pinho ◽  
Filipa Martins ◽  
M. Elisabete V. Costa ◽  
Ana M. R. Senos ◽  
Odete A. B. da Cruz e Silva ◽  
...  

Zinc Oxide Nanoparticles (ZnO NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Several studies have focused on the biosafety of ZnO NPs, since their size and surface area favor entrance and accumulation in the body, which can induce toxic effects. In previous studies, ZnO NPs have been identified as a dose- and time-dependent cytotoxic inducer in testis and male germ cells. However, the consequences for the first cell stage of spermatogenesis, spermatogonia, have never been evaluated. Therefore, the aim of the present work is to evaluate in vitro the cytotoxic effects of ZnO NPs in spermatogonia cells, focusing on changes in cytoskeleton and nucleoskeleton. For that purpose, GC-1 cell line derived from mouse testes was selected as a model of spermatogenesis. These cells were treated with different doses of ZnO NPs for 6 h and 12 h. The impact of GC-1 cells exposure to ZnO NPs on cell viability, cell damage, and cytoskeleton and nucleoskeleton dynamics was assessed. Our results clearly indicate that higher concentrations of ZnO NPs have a cytotoxic effect in GC-1 cells, leading to an increase of intracellular Reactive Oxygen Species (ROS) levels, DNA damage, cytoskeleton and nucleoskeleton dynamics alterations, and consequently cell death. In conclusion, it is here reported for the first time that ZnO NPs induce cytotoxic effects, including changes in cytoskeleton and nucleoskeleton in mouse spermatogonia cells, which may compromise the progression of spermatogenesis in a time- and dose-dependent manner.


2021 ◽  
Author(s):  
Niveen M. Daoud ◽  
S Aly Mohamed ◽  
Omaima H. Ezzo ◽  
Naglaa A. Ali

Abstract Although Zinc oxide nanoparticles (ZnO NPs) in low doses have potentially positive effects on reproduction by their antioxidant effects, the defensive role of Zinc nanomaterials against environmental pollutants that affect male reproduction has not been adequately studied. We designed our study to assess the impact of ZnO NPs towards reproductive dysfunction induced by Benzo[α]Pyrene (B[a]P). Forty-eight mature male rats were randomly distributed into six equal groups: G1; negative control, G2&3- positive control I &II (either 10 or 30 mg ZnO NPs / kg BW); G4. (150 mg Bap / kg BW), G 5 & 6 (Co- administrated B[a]P with different concentrations of ZnO NPs). Oxidative stress biomarkers, semiquantitative real-time PCR for steroidogenic enzymes (CY11A1, StAR, and 3β- HSD), testosterone levels and histopathology in the liver, kidney, and testicles were examined for this investigation. B[a] P treated group showed significant deterioration in all reproductive parameters and induced oxidative stress. Co-administration ZnO NPs eased oxidative stress and effectively increased the expression of CY11A1, StAR, and 3β- HSD and improved histopathological changes in the examined organs. Our results using the selected doses and with Nano particle properties confirm that ZnO NPs have an obvious ameliorative effect against B[a] P.


2016 ◽  
Vol 35 (12) ◽  
pp. 1286-1304 ◽  
Author(s):  
Anurag Kumar Srivastav ◽  
Mahadeo Kumar ◽  
Nasreen Ghazi Ansari ◽  
Abhishek Kumar Jain ◽  
Jai Shankar ◽  
...  

The purpose of this study was to characterize the zinc oxide nanoparticles (ZnO-NPs) and their bulk counterpart in suspensions and to access the impact of their acute oral toxicity at doses of 300 and 2000 mg/kg in healthy female Wistar rats. The hematological, biochemical, and urine parameters were accessed at 24 and 48 h and 14 days posttreatment. The histopathological evaluations of tissues were also performed. The distribution of zinc content in liver, kidney, spleen, plasma, and excretory materials (feces and urine) at 24 and 48 h and 14 days posttreatment were accessed after a single exposure at dose of 2000 mg/kg body weight. The elevated level of alanine amino transferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were observed in ZnO-NPs at a dose of 2000 mg/kg at all time points. There was a decrease in iron levels in all the treated groups at 24 h posttreatment as compared to control groups but returned to their normal level at 14 days posttreatment. The hematological parameters red blood cells, hemoglobin, hematocrit, platelets, and haptoglobin were reduced at 48 h posttreatment at a dose of 2000 mg/kg ZnO-NPs and showed hemolytic condition. All the treated groups were comparable to control group at the end of 14 days posttreatment. The zinc concentration in the kidney, liver, plasma, feces, and urine showed a significant increase in both groups as compared to control. This study explained that ZnO-NPs produced more toxicological effect as compared to their bulk particles as evidenced through alteration in some hemato-biochemical parameters and with few histopathological lesions in liver and kidney tissues.


Sign in / Sign up

Export Citation Format

Share Document