Experimental study on the synthesis and characterization of volcanic rocks (pozzolan and perlite)-based geopolymers

Author(s):  
Ayoub AZIZ ◽  
Abdellah BENZAOUAK ◽  
Abdelilah BELLIL ◽  
Thamer ALOMAYRI ◽  
Iz-Eddine EL AMRANI EL HASSANI ◽  
...  

Abstract The geopolymer preparation based on natural pozzolan is a promising route. Thus, improving the physicochemical properties of these geopolymers by adding other volcanic rocks merits investigation. The present work aims to study the effect of perlite addition, as an acidic volcanic rock, on the physico-chemical and microstructural properties of geopolymers based on pozzolan (basic volcanic rock). The perlite proportion varied between 0 and 50%. A mixture of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) was used as an alkaline activator. The perlite effect on the physico-mechanical properties of the synthesized geopolymers was evaluated by the compressive strength (Rc), P-wave velocity (Vp), bulk density (D), and porosity (P). The microstructural aspects have been explored by X-ray Diffractometry (XRD), Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray spectroscopy (EDS). The results highlight the possibility of obtaining an eco-efficient geopolymer, with compressive strength of up to 50 MPa at 28 days by partially replacing the pozzolan by 40% of the perlite, due to the formation of more amorphous N-A-S-H type gel. However, the excessive content (over 40%) of perlite had a negative effect on the development of the compressive strength and microstructure of the pozzolan-based geopolymer, which was related to the formation of zeolitic phases in the geopolymer matrix. This study confirms the promise of using pozzolan-perlite-based geopolymers as sustainable building materials, which could significantly promote the development of geo-resources and environmental protection in the construction sector.

Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 82
Author(s):  
Salmabanu Luhar ◽  
Demetris Nicolaides ◽  
Ismail Luhar

Even though, an innovative inorganic family of geopolymer concretes are eye-catching potential building materials, it is quite essential to comprehend the fire and thermal resistance of these structural materials at a very high temperature and also when experiencing fire with a view to make certain not only the safety and security of lives and properties but also to establish them as more sustainable edifice materials for future. The experimental and field observations of degree of cracking, spalling and loss of strength within the geopolymer concretes subsequent to exposure at elevated temperature and incidences of occurrences of disastrous fires extend an indication of their resistance against such severely catastrophic conditions. The impact of heat and fire on mechanical attributes viz., mechanical-compressive strength, flexural behavior, elastic modulus; durability—thermal shrinkage; chemical stability; the impact of thermal creep on compressive strength; and microstructure properties—XRD, FTIR, NMR, SEM as well as physico-chemical modifications of geopolymer composites subsequent to their exposures at elevated temperatures is reviewed in depth. The present scientific state-of-the-art review manuscript aimed to assess the fire and thermal resistance of geopolymer concrete along with its thermo-chemistry at a towering temperature in order to introduce this novel, most modern, user and eco-benign construction materials as potentially promising, sustainable, durable, thermal and fire-resistant building materials promoting their optimal and apposite applications for construction and infrastructure industries.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2967
Author(s):  
Rokiah Othman ◽  
Ramadhansyah Putra Jaya ◽  
Khairunisa Muthusamy ◽  
MohdArif Sulaiman ◽  
Youventharan Duraisamy ◽  
...  

This study aims to obtain the relationship between density and compressive strength of foamed concrete. Foamed concrete is a preferred building material due to the low density of its concrete. In foamed concrete, the compressive strength reduces with decreasing density. Generally, a denser foamed concrete produces higher compressive strength and lower volume of voids. In the present study, the tests were carried out in stages in order to investigate the effect of sand–cement ratio, water to cement ratio, foam dosage, and dilution ratio on workability, density, and compressive strength of the control foamed concrete specimen. Next, the test obtained the optimum content of processed spent bleaching earth (PSBE) as partial cement replacement in the foamed concrete. Based on the experimental results, the use of 1:1.5 cement to sand ratio for the mortar mix specified the best performance for density, workability, and 28-day compressive strength. Increasing the sand to cement ratio increased the density and compressive strength of the mortar specimen. In addition, in the production of control foamed concrete, increasing the foam dosage reduced the density and compressive strength of the control specimen. Similarly with the dilution ratio, the compressive strength of the control foamed concrete decreased with an increasing dilution ratio. The employment of PSBE significantly influenced the density and compressive strength of the foamed concrete. An increase in the percentage of PSBE reduced the density of the foamed concrete. The compressive strength of the foamed concrete that incorporated PSBE increased with increasing PSBE content up to 30% PSBE. In conclusion, the compressive strength of foamed concrete depends on its density. It was revealed that the use of 30% PSBE as a replacement for cement meets the desired density of 1600 kg/m3, with stability and consistency in workability, and it increases the compressive strength dramatically from 10 to 23 MPa as compared to the control specimen. Thus, it demonstrated that the positive effect of incorporation of PSBE in foamed concrete is linked to the pozzolanic effect whereby more calcium silicate hydrate (CSH) produces denser foamed concrete, which leads to higher strength, and it is less pore connected. In addition, the regression analysis shows strong correlation between density and compressive strength of the foamed concrete due to the R2 being closer to one. Thus, production of foamed concrete incorporating 30% PSBE might have potential for sustainable building materials.


2020 ◽  
Vol 10 (11) ◽  
pp. 4032
Author(s):  
Anna-Marie Lauermannová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
Milena Pavlíková ◽  
...  

The search for environmentally sustainable building materials is currently experiencing significant expansion. It is increasingly important to find new materials or reintroduce those that have been set aside to find a good replacement for Portland cement, which is widely used despite being environmentally insufficient and energy-intensive. Magnesium oxybromides, analogues to well-known magnesium oxychloride cements, fit both categories of new and reintroduced materials. In this contribution, two magnesium oxybromide phases were prepared and thoroughly analyzed. The stoichiometries of the prepared phases were 5Mg(OH)2∙MgBr2∙8H2O and 3Mg(OH)2∙MgBr2∙8H2O. The phase analysis was determined using X-ray diffraction. The morphology was analyzed with scanning and transmission electron microscopy. The chemical composition was studied using X-ray fluorescence and energy dispersive spectroscopy. Fourier transform infrared spectroscopy was also used. The thermal stability and the mechanism of the release of gasses linked to the heating process, such as water and hydrobromic acid evaporation, were analyzed using simultaneous thermal analysis combined with mass spectroscopy. The obtained results were compared with the data available for magnesium oxychlorides.


2013 ◽  
Vol 438-439 ◽  
pp. 30-35 ◽  
Author(s):  
Nirdosha Gamage ◽  
Sujeeva Setunge ◽  
Kasuni Liyanage

The Victoria State of Australia has the second largest reserves of brown coal on earth, representing approximately 20% of the worlds reserves, and at current use, could supply Victoria with its energy for over 500 years. Its combustion, annually, yields up to 1.3 million tonnes of fly ash, which is largely use for land-fills. Disposal of fly ash in open dumps cause massive environmental problems such as ground water contamination that may create various health problems. This study focuses on the usability of brown coal fly ash to develop a sustainable building material. A series of laboratory investigations was conducted using brown coal fly ash combined with cement and aggregate to prepare cold pressed samples aiming to test their properties. Initial results indicate that compressive strength satisfies minimum standard compressive strength required for bricks or mortar.


2019 ◽  
Vol 9 (13) ◽  
pp. 2598 ◽  
Author(s):  
M. J. Hernández-Rodríguez ◽  
R. Santana Rodríguez ◽  
R. Darias ◽  
O. González Díaz ◽  
J. M. Pérez Luzardo ◽  
...  

In this study, mortar specimens were prepared with a cement:sand:water ratio of 1:3:0.5, in accordance with standard EN196-1. Portland CEM I 52.5 R grey (G) and white (W) cements were used, together with normalised sand and distilled water. Different amounts of TiO2 photocatalyst were incorporated in the preparation of the mortar samples. The effect of the addition of TiO2 was studied on mechanical properties of the mortar and cement including compressive and flexural strength, consistency (the flow table test), setting time and carbonation. Characterization techniques, including thermogravimetry, mercury porosimetry and X-ray diffraction spectroscopy (XRD), were applied to study the physico-chemical properties of the mortars. It was shown that adding the photocatalyst to the mortar had no negative effect on its properties and could be used to accelerate the setting process. Specimen photoactivity with the incorporated photocatalyst was tested for NOx oxidation in different conditions of humidity (0% RH and 65% RH) and illumination (Vis or Vis/UV), with the results showing an important activity even under Vis radiation.


Author(s):  
Madhurima Das ◽  
Siba Prasad Mishra

Coping with population growth, houses are built to meet the hike. The prerequisites for concrete and steel reinforcements have surged up globally since last 3 to 4decades. Shortage of natural building materials, increased wastes from coal based industries to augment carbon foot print has worried the engineers to reuse their wastes (such as fibres, powders, granules, etc.) as building materials ingredient. Glass fibre has improved flexural capabilities with fly ash dosages in cement concrete and alternately helps in restricting environmental degradation. Present research aims at investigating the impact of glass fiber (at 1%, 2% and 3% addition) and fly ash (dosages of 10% and 20% over the existing fly ash in PPC). The ingredients and microstructure of composites are found by either X-ray fluorescent spectroscopy or scanning electron microscope. Experimental evaluation results of the blended composite concrete parameters of RCC are experimentally evaluated and compared have shown that concrete with 10% cement substitution with fly ash and 3% fibre showed optimum compressive strength performance than the concrete without fibre and fly ash and also chemically resistant against commonly used M-20 grade of Concrete.


2021 ◽  
Vol 5 (1) ◽  
pp. 60
Author(s):  
Anthony Kastrinakis ◽  
Vasilios Skliros ◽  
Petros Tsakiridis ◽  
Maria Perraki

Synthetic nesquehonite with a Mg(HCO3)OH·2H2O chemical formula is a solid product of CO2 mineralization with cementitious properties. It constitutes an “MHCH” (magnesium hydroxy-carbonate hydrate) phase and, along with dypingite and hydromagnesite, is considered to be a promising permanent and safe solution for CO2 storage with potential utilization as a supplementary material in “green” building materials. In this work, synthetic nesquehonite-based mortars were evaluated in terms of their compressive strengths. Nesquehonite was synthesized by CO2 mineralization under ambient conditions (25 °C and 1 atm). A saturated Mg2+ solution was used at a pH of 9.3. The synthesized nesquehonite was subsequently studied by means of optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Impurity-free nesquehonite formed elongated fibers, often around a centerpiece, creating a rosette-like structure. The synthesized nesquehonite was mixed with reactive magnesia, natural pozzolan, standard aggregate sand and water to create a mortar. The mortar was cast into 5 × 5 × 5 silicone mold and cured in water for 28 days. A compressive strength of up to 22 MPa was achieved. An X-ray diffraction study of the cured mortars revealed the formation of brucite as the main hydration crystalline phase. Carbon dioxide mineralized nesquehonite is a very promising “green” building material with competitive properties that might prove to be an essential part of the circular economy industrial approach.


EKSPLORIUM ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 31
Author(s):  
I Gde Sukadana ◽  
Agung Harijoko ◽  
Lucas Donny Setijadji

Kompleks batuan gunung api Adang di daerah Kabupaten Mamuju, Sulawesi Barat secara lebih detail dapat dikelompokkan menjadi tujuh, yaitu kompleks Tapalang, Ampalas, Adang, Malunda, Karampuang, Sumare, dan Labuan Rano. Komplek Adang merupakan salah satu komplek gunungapi utama yang masih dapat diidentifikasi bentukan morfologinya dengan baik. Komplek ini  tersusunatas batuan gunung api basa hingga intermediet yang memiliki nilai laju dosis radiasi cukup tinggi yang disebabkan oleh kandungan mineral radioaktif di dalamnya. Keterdapatan mineral radioaktif pada batuan basaltik-andesitik belum pernah dijumpai di Indonesia sehingga hal ini menjadi sangat menarik untuk dilakukan penelitian terutama tataan tektonika pembentukan batuan komplek gunung api tersebut. Tujuan penelitian ini adalah untuk menentukan tipologi magmatik yang terkait dengantataan tektonikanya dengan pendekatan  geokimia batuan gunung api menggunakan analisis X-Ray Fluorescence (XRF). Batuan gunung api Adang merupakan hasil dari proses vulkanisme suatu komplekgunung api yang memiliki pusat erupsi dan beberapa kubah lava. Batuan tersebut tersusun atas batuan trachyte-phonolite, dengan afinitas magmatiknya ultrapotasik, Dari data tersebut dapat diinterpretasi bahwa tataan tektonika magmatologinya adalah active continental margin(ACM). Magma asal yang membentuknya dari aktivitas gunung apinya dipengaruhi oleh kerak benua mikro barat daya (South West/SW) Sulawesi. Adang volcanic complexlocated in Mamuju Region, West Sulawesi can be grouped more detail into seven complexes that are Tapalang, Ampalas, Adang, Malunda, Karampuang, Sumare, and Labuan Rano. Adang complex is one of the main volcanic complexes that still can be identified with good morphological formations. This complex is composed of alkaline volcanic rocks with basic to intermediates composition that have high value of radiation dose rate caused by their radioactive mineral content. Radioactive mineral occurrences on the basaltic-andesitic rocks has never been found in Indonesia, so it becomes very interesting to do research mainly tectonic settings of the volcanic rock complex formation. The purpose of this study is to determine magmatiic typology related with the tectonic setting based on volcanic rock  geochemistry using X-Ray Fluorences (XRF) analysis. Adang volcanic rock is the result of a complex process of volcanism having a volcanic center and several lava domes. They are composed of phonolite to dacite rock, with ultrapotassic affinity, interpretation of data concluded that tectonic setting of magmatism formed in active continental margin (ACM). Magmatism source from vulcanic activities influenced by South WestSulawesi micro-continental crust.


2016 ◽  
Vol 5 (2) ◽  
pp. 140
Author(s):  
W.S.B. Dwandaru ◽  
H.S.A Tina ◽  
A. Andreyani

As the world is growing rapidly, people need better building materials such as mortar. The aim of this research is to determine the effect of adding silver nanoparticle solution towards the porosity and compressive strength of mortar. This research was started by making silver nanoparticle solution from nitrate silver (AgNO3). The solution is then characterized using Uv-Vis spectrophotometer. 5 mM silver nanoparticle is added in the process of mortar production with volume variation of the silver nanoparticle solution. The porosity, compressive strength, and the content of mortar were determined by digital scale, universal testing machine, and X-ray diffraction, respectively. For silver nanoparticle solution volumes of (in mL) 0, 5, 10, 15, 20, and 25 the porosity obtained are (in %) 20.38, 19.48, 19.42, 18.9, 17.8, and 17.5, respectively. The best increase in compressive strength is obtained for (in MPa) 29,068, 29,308, and 31,385, with nanoparticle solution volumes of (in mL) 5, 10, and 15 Keywords: mortar, silver nanoparticle, compressive strength


2018 ◽  
Vol 15 (4) ◽  
pp. 513-519 ◽  
Author(s):  
Somia Bechar ◽  
Djamal Zerrouki

PurposeWells’ cementing is an important and costly step in the engineering sector for oil and gas well. The purpose of this study was to investigate the use of Algerian natural pozzolan (NP) in order to evaluate the influence of partial substitution of class G cement on slurry properties.Design/methodology/approachNP was characterized by X-ray fluorescence (XRF), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and Fourier-transform infra-red spectrometry (FTIR). Their pozzolanic activity was evaluated by measuring the electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The replacement ration cement/NP was 10, 20 and 30 per cent, and the rheological behaviour, compressive strength properties at different ages, elastic properties, X-ray diffraction analysis, rapid chloride penetration, porosity and permeability of all slurries were investigated and compared with a standard sample.FindingsThe obtained results indicated that the replacement with 20 per cent by weight of cement at 21 and 28 days had a higher compressive strength (+30.62 per cent) and lower chloride penetration.Originality/valueThe results show the potential of the use of locally available NP in well cementing.


Sign in / Sign up

Export Citation Format

Share Document